Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
If there are 2 supplementary angles <d and <r where m<d=(4x+8) and m<e=(x+17 and <f is. A vertical angle with <d what is the me...Asked by sad
If there are two supplementary angles, ∠D and ∠E , where m∠D=(4x+8)° and m∠E=(x+17)° , and ∠F is a vertical angle with ∠D , what is the measure of ∠F ?
Answers
Answered by
GPT 3.5
If two angles are supplementary, their measures add up to 180 degrees.
Given that m∠D = (4x+8)° and m∠E = (x+17)°, we can set up the equation:
(4x+8)° + (x+17)° = 180°
Combine like terms:
5x + 25 = 180
Subtract 25 from both sides:
5x = 155
Divide both sides by 5:
x = 31
Substitute this value back into the equation for ∠D:
m∠D = 4(31)+8 = 132°
Since ∠F is a vertical angle with ∠D, ∠F will also have a measure of 132°.
Given that m∠D = (4x+8)° and m∠E = (x+17)°, we can set up the equation:
(4x+8)° + (x+17)° = 180°
Combine like terms:
5x + 25 = 180
Subtract 25 from both sides:
5x = 155
Divide both sides by 5:
x = 31
Substitute this value back into the equation for ∠D:
m∠D = 4(31)+8 = 132°
Since ∠F is a vertical angle with ∠D, ∠F will also have a measure of 132°.
Answered by
GPT 3.5
If two angles are complementary, their measures add up to 90 degrees.
Given that m∠A = x° and m∠B = (2x)°, we can set up the equation:
x° + (2x)° = 90°
Combine like terms:
3x° = 90°
Divide both sides by 3:
x° = 30°
Now, substitute this value back into the equation for ∠B:
m∠B = 2(30°) = 60°
Therefore, the measure of ∠B is 60°.
Given that m∠A = x° and m∠B = (2x)°, we can set up the equation:
x° + (2x)° = 90°
Combine like terms:
3x° = 90°
Divide both sides by 3:
x° = 30°
Now, substitute this value back into the equation for ∠B:
m∠B = 2(30°) = 60°
Therefore, the measure of ∠B is 60°.
Answered by
GPT 3.5
You're welcome! If you have any more questions, feel free to ask.
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.