Asked by statstudent
I'm trying to work through the proof for
SST = SSM + SSE
MEAN = ∑(X)/N
SST = ∑((x - MEAN)^2)
= ∑(x^2 - 2 * x1 * MEAN + MEAN^2)
= ∑(x^2) - 2 * MEAN * ∑(x) + N * MEAN^2
= ∑(x^2) - 2 * ∑(x)^2/N + ∑(x)^2/N
= ∑(x^2) - ∑(x)^2/N
SSM = ∑((MODEL - MEAN)^2)
= ∑(MODEL^2 - 2 * MODEL * MEAN + MEAN^2)
= ∑(MODEL^2) - 2 * MEAN * ∑(MODEL) + N * MEAN^2
= ∑(MODEL^2) - 2 * MEAN * ∑(MODEL) + N * MEAN^2
= ∑(MODEL^2) - 2/N * ∑(x) * ∑(MODEL) + ∑(x)^2/N
SSE = ∑((x - MODEL)^2)
= ∑(x^2 - 2 * x * MODEL + MODEL^2)
= ∑(x^2) - 2 * ∑(x * MODEL) + ∑(MODEL^2)
SST = SSM + SSE
∑(x^2) - ∑(x)^2/N = ∑(MODEL^2) - 2/N * ∑(x) * ∑(MODEL) + ∑(x)^2/N + ∑(x^2) - 2 * ∑(x * MODEL) + ∑(MODEL^2)
2 * ∑(MODEL^2) - 2/N * ∑(x) * ∑(MODEL) + 2 * ∑(x)^2/N + - 2 * ∑(x * MODEL) = 0
∑(MODEL^2) - 1/N * ∑(x) * ∑(MODEL) + ∑(x)^2/N + - ∑(x * MODEL) = 0
I can't complete the proof. What am I missing? Thanks!
SST = SSM + SSE
MEAN = ∑(X)/N
SST = ∑((x - MEAN)^2)
= ∑(x^2 - 2 * x1 * MEAN + MEAN^2)
= ∑(x^2) - 2 * MEAN * ∑(x) + N * MEAN^2
= ∑(x^2) - 2 * ∑(x)^2/N + ∑(x)^2/N
= ∑(x^2) - ∑(x)^2/N
SSM = ∑((MODEL - MEAN)^2)
= ∑(MODEL^2 - 2 * MODEL * MEAN + MEAN^2)
= ∑(MODEL^2) - 2 * MEAN * ∑(MODEL) + N * MEAN^2
= ∑(MODEL^2) - 2 * MEAN * ∑(MODEL) + N * MEAN^2
= ∑(MODEL^2) - 2/N * ∑(x) * ∑(MODEL) + ∑(x)^2/N
SSE = ∑((x - MODEL)^2)
= ∑(x^2 - 2 * x * MODEL + MODEL^2)
= ∑(x^2) - 2 * ∑(x * MODEL) + ∑(MODEL^2)
SST = SSM + SSE
∑(x^2) - ∑(x)^2/N = ∑(MODEL^2) - 2/N * ∑(x) * ∑(MODEL) + ∑(x)^2/N + ∑(x^2) - 2 * ∑(x * MODEL) + ∑(MODEL^2)
2 * ∑(MODEL^2) - 2/N * ∑(x) * ∑(MODEL) + 2 * ∑(x)^2/N + - 2 * ∑(x * MODEL) = 0
∑(MODEL^2) - 1/N * ∑(x) * ∑(MODEL) + ∑(x)^2/N + - ∑(x * MODEL) = 0
I can't complete the proof. What am I missing? Thanks!
Answers
Answered by
Count Iblis
Divide the sum of squares by N and work with the averages. Let's use the notation:
<X> for the average of X. E.g.:
<X> = ∑(X)/N = Mean
And:
<(X-<X>)^2> =
<X^2 - 2X<X> + <X>^2> =
<X^2> - <X>^2
Note that <a X> = a <X> for a constant factor a. In an average like <X <X>>, the inner <X> is a constant when carrying out the outer average, so you can take it out of the outer average sign. So, you have <X <X>> = <X>^2. The average of a constant is, of course, the same constant so e.g. <<X>^2> = <X^2> because once the inner average is carried out it is a constant w.r.t. the outer average.
If you work with averages and use these rules then you can derive the desired result in just one line. If you use summations, you'll tend to re-derive these rules in every step you make, so you'll get a complicated mess.
Derivation:
<(X - <X>)^2> =
<(X - m + m - <X>)^2> =
<(X-m)^2> + <(m - <X>)^2>
+ 2 <X-m><m-<X>>
The last term is zero if the average of X equals the average of the Model.
<X> for the average of X. E.g.:
<X> = ∑(X)/N = Mean
And:
<(X-<X>)^2> =
<X^2 - 2X<X> + <X>^2> =
<X^2> - <X>^2
Note that <a X> = a <X> for a constant factor a. In an average like <X <X>>, the inner <X> is a constant when carrying out the outer average, so you can take it out of the outer average sign. So, you have <X <X>> = <X>^2. The average of a constant is, of course, the same constant so e.g. <<X>^2> = <X^2> because once the inner average is carried out it is a constant w.r.t. the outer average.
If you work with averages and use these rules then you can derive the desired result in just one line. If you use summations, you'll tend to re-derive these rules in every step you make, so you'll get a complicated mess.
Derivation:
<(X - <X>)^2> =
<(X - m + m - <X>)^2> =
<(X-m)^2> + <(m - <X>)^2>
+ 2 <X-m><m-<X>>
The last term is zero if the average of X equals the average of the Model.
Answered by
statstudent
I don't follow this:
<<X>^2> = <X^2>
Of course, if k is constant and x is variable:
<kx> = k<x>
<k> = k
<k^2> = k^2
but...
<x^2> != <x>^2
<<X>^2> = <X^2>
Of course, if k is constant and x is variable:
<kx> = k<x>
<k> = k
<k^2> = k^2
but...
<x^2> != <x>^2
Answered by
Count Iblis
Sorry, that was a typo.
I meant to write:
<<X>^2> = <X>^2
I meant to write:
<<X>^2> = <X>^2
Answered by
statstudent
I don't follow this at all:
<(X - m + m - <X>)^2> = <(X-m)^2> + <(m - <X>)^2> + 2 <X-m><m-<X>>
Trying to follow your logic, for the left side:
<(X - m + m - <X>)^2>
= <(X - <X>)^2>
= <x^2> - <x>^2
= SST
For SSM + SSE:
<(x - m>^2> + <(m - <x>)^2>
= <x^2 - 2xm + m^2> + <m^2 - 2m<x> + <x>^2>
= <x^2> - 2<xm> + <m^2> + <m^2> - 2<m><x> + <x>^2>
= 2<x^2> + 2<m^2> - 2<xm> - 2<m><x>
And I'm stuck...
<(X - m + m - <X>)^2> = <(X-m)^2> + <(m - <X>)^2> + 2 <X-m><m-<X>>
Trying to follow your logic, for the left side:
<(X - m + m - <X>)^2>
= <(X - <X>)^2>
= <x^2> - <x>^2
= SST
For SSM + SSE:
<(x - m>^2> + <(m - <x>)^2>
= <x^2 - 2xm + m^2> + <m^2 - 2m<x> + <x>^2>
= <x^2> - 2<xm> + <m^2> + <m^2> - 2<m><x> + <x>^2>
= 2<x^2> + 2<m^2> - 2<xm> - 2<m><x>
And I'm stuck...
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.