Determine the scale factor used in the dilation of line AB , with a center point of dilation at the origin. (1 point) The scale factor is _

AB= (-3,4) (2,-4)
AB= (-6,8) (4,-8)

1 answer

To find the scale factor, we can compare the distances between the corresponding points of the original and dilated lines.

The distance between the points (-3,4) and (-6,8) in the original line AB is calculated as follows:

Distance = √[(x2 - x1)^2 + (y2 - y1)^2]
Distance = √[(-6 - (-3))^2 + (8 - 4)^2]
Distance = √[(-3)^2 + 4^2]
Distance = √[9 + 16]
Distance = √25
Distance = 5

Now, let's calculate the distance between the corresponding points (2,-4) and (4,-8) in the dilated line AB:

Distance = √[(x2 - x1)^2 + (y2 - y1)^2]
Distance = √[(4 - 2)^2 + (-8 - (-4))^2]
Distance = √[2^2 + (-4)^2]
Distance = √[4 + 16]
Distance = √20
Distance = 2√5

To find the scale factor, we divide the distance of the dilated line by the distance of the original line:

Scale factor = Distance of Dilated Line / Distance of Original Line
Scale factor = (2√5) / 5
Scale factor = √5 / 5

Therefore, the scale factor used in the dilation of line AB is √5 / 5.
Similar Questions
    1. answers icon 1 answer
  1. Determine whether the dilation passes through the center of dilation.(1 point) Responses A′B′¯¯¯¯¯¯¯¯¯¯ passes
    1. answers icon 3 answers
  2. On a grid there are two lines with the following points =Line 1 : A = (9, 9) B = (6, 6) Line 2 : A = (3, 3) B = (2, 2) Determine
    1. answers icon 1 answer
  3. A (-3, 4) to B (2, -4) and A' (-6, 8) to B' (4,-8).Determine the scale factor used in the dilation of line AB, with a center
    1. answers icon 1 answer
more similar questions