To find the coordinates after dilation, we need to multiply each coordinate of the original points by the scale factor.
For point A:
x-coordinate of A' = -6 * 13 = -78
y-coordinate of A' = 3 * 13 = 39
So, A' is (-78, 39).
For point B:
x-coordinate of B' = -12 * 13 = -156
y-coordinate of B' = 9 * 13 = 117
So, B' is (-156, 117).
Select the coordinates A′ and B′ after dilation of the line segment AB with a scale factor of 13, centered at the origin where the endpoints are A(−6,3) and B(−12,9).(1 point)
3 answers
Try again
To find the coordinates after dilation, we need to multiply each coordinate of the original points by the scale factor.
For point A:
x-coordinate of A' = -6 * 13 = -78
y-coordinate of A' = 3 * 13 = 39
So, A' is (-78, 39).
For point B:
x-coordinate of B' = -12 * 13 = -156
y-coordinate of B' = 9 * 13 = 117
So, B' is (-156, 117).
For point A:
x-coordinate of A' = -6 * 13 = -78
y-coordinate of A' = 3 * 13 = 39
So, A' is (-78, 39).
For point B:
x-coordinate of B' = -12 * 13 = -156
y-coordinate of B' = 9 * 13 = 117
So, B' is (-156, 117).