Asked by avm
                In how many of the arrangements would the two L's be together, for the word BASKETBALL?
            
            
        Answers
                    Answered by
            MathMate
            
    The number of arrangements for n distinct lettes is
n!
For example: 4!=24 distinct words can be made from the letters ABCD.
The number of arrangements for n letters, of which p are identical is
n!/p!
For example: 4!/2!=12 words can be made from the letters AABC.
The number of arrangements for n letters, of which p are identical and q are identical is
n!/(p!q!)
For example: 6!/(2!2!)=180 words can be made from the letters AABBCD.
If two letters have to be together all the timee, treat them as a single letter.
For the word BASKETBALL,
first arrange them in alphabetical order:
AABBEKLLST
Out of the 10 letters, AA and BB are repetitions, LL can be treated as one single letter (to have a total of 11 letters).
So the number of distinct words possible is
11!/(...)
    
n!
For example: 4!=24 distinct words can be made from the letters ABCD.
The number of arrangements for n letters, of which p are identical is
n!/p!
For example: 4!/2!=12 words can be made from the letters AABC.
The number of arrangements for n letters, of which p are identical and q are identical is
n!/(p!q!)
For example: 6!/(2!2!)=180 words can be made from the letters AABBCD.
If two letters have to be together all the timee, treat them as a single letter.
For the word BASKETBALL,
first arrange them in alphabetical order:
AABBEKLLST
Out of the 10 letters, AA and BB are repetitions, LL can be treated as one single letter (to have a total of 11 letters).
So the number of distinct words possible is
11!/(...)
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.