Question
180 Degree Rotations Quick Check
4 of 54 of 5 Items
Question
Use the image to answer the question.
An illustration of a coordinate plane with four quadrants shows the x and y axes extending from negative 8 to 8 in increments of 1. A triangle A B C is plotted on the graph. The triangle A B C has its vertices marked with closed points at A left parenthesis 2 comma 4 right parenthesis, B left parenthesis 6 comma 6 right parenthesis, and C left parenthesis 6 comma 2 right parenthesis.
Given point A (2, 4) on the triangle in Quadrant I, where is the new point if the triangle is rotated 90 degrees counterclockwise?
(1 point)
Responses
(4,−2)
left parenthesis 4 comma negative 2 right parenthesis
(−4,−2)
left parenthesis negative 4 comma negative 2 right parenthesis
(−2,−4)
left parenthesis negative 2 comma negative 4 right parenthesis
(−4, 2)
left parenthesis negative 4 comma 2 right parenthesis
Skip to navigation
page 16 of 16
Answers
GPT 3.5
To determine the new point when the triangle is rotated 90 degrees counterclockwise, we can analyze the movement of each vertex.
Given point A (2, 4) in Quadrant I, when rotated 90 degrees counterclockwise, the x-coordinate becomes the negative of the y-coordinate, and the y-coordinate becomes the x-coordinate.
Therefore, the new point will have coordinates (-4, 2).
So, the correct response is: (−4, 2)
Given point A (2, 4) in Quadrant I, when rotated 90 degrees counterclockwise, the x-coordinate becomes the negative of the y-coordinate, and the y-coordinate becomes the x-coordinate.
Therefore, the new point will have coordinates (-4, 2).
So, the correct response is: (−4, 2)