To solve the inequality x ≥ -4x ≥ -4, we need to solve each part separately.
First, let's solve -4x ≥ -4.
Dividing both sides by -4 and reversing the inequality sign (since we are dividing by a negative number), we get x ≤ 1.
Next, let's solve x ≥ -4.
This inequality is already solved. Any number greater than or equal to -4 satisfies this inequality.
Now, let's find the numbers that satisfy both inequalities:
-4611 is not greater than or equal to -4, so it does not satisfy the inequality.
-5 is greater than or equal to -4, so it satisfies the inequality.
-2.101101110... is greater than or equal to -4, so it satisfies the inequality.
-10.1010 is not greater than or equal to -4, so it does not satisfy the inequality.
-√10 is not relevant for this inequality because it is asking for numbers greater than or equal to -4.
Therefore, the numbers that make the inequality x ≥ -4x ≥ -4 true are:
-5
-2.101101110...
Final answer: -5 and -2.101101110...
For the inequality x≥−4x≥−4 , which number(s) listed makes the inequality true? (Check all that apply)(2 points) Responses −4611−4611negative 46 over 11 -5 -5 -2.101101110... -2.101101110... -10.1010 -10.1010 −10−−√
1 answer