Question
                There is a pair of vertical angles whose measures are  m∠1=106°  and  m∠2=(3x−75)° . What equation can you write to solve for  x ?(1 point)
Responses

3x°−75°−106°=180°
3 x minus 75 minus 106 degrees equals 180 degrees

3x°−75°=106°
3 x minus 75 equals 106 degrees

3x°−75°+106°=90°
3 x minus 75 plus 106 degrees equals 90 degrees

3x°−75°+106°=180°
3 x minus 75 plus 106 degrees equals 180 degre
            
        Responses

3x°−75°−106°=180°
3 x minus 75 minus 106 degrees equals 180 degrees

3x°−75°=106°
3 x minus 75 equals 106 degrees

3x°−75°+106°=90°
3 x minus 75 plus 106 degrees equals 90 degrees

3x°−75°+106°=180°
3 x minus 75 plus 106 degrees equals 180 degre
Answers
                    Answer
            
    Two intersecting lines create four angles;  ∠1  and  ∠3  are a vertical pair. Their sum of their measures is equal to  68° . What equation solves for the value of each angle?(1 point)
Responses

x°=68°
x equals 68 degrees

68x°=2°
68 x equals 2

2x°=68°
2 x equals 68 degrees

2x°+68°=180°
    
Responses

x°=68°
x equals 68 degrees

68x°=2°
68 x equals 2

2x°=68°
2 x equals 68 degrees

2x°+68°=180°
                    Answer
            
    thats not one of the answers
    
                    Answer
            
    x°=68°
x equals 68 degrees

68x°=2°
68 x equals 2

2x°=68°
2 x equals 68 degrees

2x°+68°=180°
from one of these
    
x equals 68 degrees

68x°=2°
68 x equals 2

2x°=68°
2 x equals 68 degrees

2x°+68°=180°
from one of these
                    Answer
            
    The sum of the measures of two vertical angles is  300° . Solve for the measure of each angle.(1 point)
Responses

90°
90 degrees

75°
75 degrees

120°
120 degrees

150°
    
Responses

90°
90 degrees

75°
75 degrees

120°
120 degrees

150°
                    Answer
            
    In a geometric figure two intersecting lines creating four angles. If ∠1 and ∠3 are a vertical pair, m∠1=(4x+26)°, and m∠3=98°, what is the value of x?(1 point)
Responses

7272

9898

18
18

14
    
Responses

7272

9898

18
18

14
                    Answered by
            GPT 3.5
            
    The correct equation to solve for x is:
3x° - 75° = 106°
    
3x° - 75° = 106°
                    Answered by
            GPT 3.5
            
    The correct equation to solve for the values of ∠1 and ∠3 is:
∠1 + ∠3 = 68°
    
∠1 + ∠3 = 68°
                    Answered by
            GPT 3.5
            
    Apologies for the misunderstanding. Based on the given options, the correct equation to solve for the values of ∠1 and ∠3 is:
∠1 + ∠3 = 68°
    
∠1 + ∠3 = 68°
                    Answered by
            GPT 3.5
            
    The correct equation to solve for the values of ∠1 and ∠3 is:
2x° + 68° = 180°
    
2x° + 68° = 180°
                    Answered by
            GPT 3.5
            
    To solve for the measure of each angle, we divide the sum of their measures (300°) by 2, since vertical angles are congruent. Therefore, each angle measures:
300° / 2 = 150°
So, the measure of each angle is 150°.
    
300° / 2 = 150°
So, the measure of each angle is 150°.
                    Answered by
            GPT 3.5
            
    To find the value of x, we can set up an equation based on the fact that vertical angles are congruent. 
Since ∠1 and ∠3 are a vertical pair, we have:
m∠1 = m∠3
(4x + 26)° = 98°
Now, we can solve for x:
4x + 26 = 98
Subtracting 26 from both sides:
4x = 72
Dividing both sides by 4:
x = 18
Therefore, the value of x is 18.
    
Since ∠1 and ∠3 are a vertical pair, we have:
m∠1 = m∠3
(4x + 26)° = 98°
Now, we can solve for x:
4x + 26 = 98
Subtracting 26 from both sides:
4x = 72
Dividing both sides by 4:
x = 18
Therefore, the value of x is 18.
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.