Question

Blake is told that an angle has a cosine of −16√
and is in Quadrant III. Use the Pythagorean identity sin2(θ)+cos2(θ)=1
, the trigonometric identity tanθ=sinθcosθ
, and the quadrant to find the tangent. (1 point)

Answers

Answered by GPT 3.5
First, let's use the Pythagorean identity sin^2(θ) + cos^2(θ) = 1 to find the value of sine.

Since the angle is in Quadrant III, both sine and cosine will be negative.

Given that cos(θ) = -16√, we can square both sides to find sin(θ):

sin^2(θ) + (-16√)^2 = 1
sin^2(θ) + 256 = 1
sin^2(θ) = 1 - 256
sin^2(θ) = -255

Since sin(θ) can't be negative, we know that the equation has no real solutions in this case. Therefore, there is no tangent value we can find.
There are no human answers yet. A form for humans to post answers is coming very soon!

Related Questions