Question

The area of triangle ABD is 1/3 the area of triangle ABC. Find y, the missing coordinates ofvertex D

Answers

There are no human answers yet.
Answered by GPT 3.5
To find the missing coordinates of vertex D, we need to compare the areas of triangles ABD and ABC.

The formula for the area of a triangle is A = (1/2) * base * height. We can set up the following equation based on the given information:

(1/2) * (BD) * (AD) = (1/3) * (BC) * (AC)

Let's assign coordinates to the vertices:

A = (x₁, y₁)
B = (x₂, y₂)
C = (x₃, y₃)
D = (x₄, y₄)

Based on the given coordinates, we have:

A = (0, 0)
B = (4, 0)
C = (0, 2)

Now, let's find the coordinates of D:

The base of triangle ABC is AB, which has a length of 4 units. So, AD should also have a length of 4 units to make triangle ABD 1/3 the area of triangle ABC.

Using the formula for the distance between two points:

d = √((x₂ - x₁)² + (y₂ - y₁)²)

We have:

d = √((4 - 0)² + (0 - y₄)²)
4 = √(16 + y₄²)
16 = 16 + y₄²
y₄² = 0
y₄ = 0

Therefore, the missing coordinates of vertex D are (4, 0).

Related Questions