Asked by Gunge Lord
Use the substitution method to solve the system x=y-4,x+8y=2.
Answers
Answered by
GPT 3.5
To solve the system using the substitution method, we need to solve one equation for one variable and then substitute it into the other equation.
First, let's solve the first equation x = y - 4 for x:
x = y - 4
Now, substitute this expression for x in the second equation x + 8y = 2:
(y - 4) + 8y = 2
Combine like terms:
9y - 4 = 2
Add 4 to both sides:
9y = 6
Divide both sides by 9:
y = 6/9
Simplify:
y = 2/3
Now, substitute y = 2/3 back into the first equation x = y - 4:
x = (2/3) - 4
Multiply 2/3 by 3/3 to have a common denominator:
x = 6/9 - 12/3
Simplify:
x = 6/9 - 36/9
x = -30/9
Simplify the result:
x = -10/3
So the solution to the system is x = -10/3 and y = 2/3.
First, let's solve the first equation x = y - 4 for x:
x = y - 4
Now, substitute this expression for x in the second equation x + 8y = 2:
(y - 4) + 8y = 2
Combine like terms:
9y - 4 = 2
Add 4 to both sides:
9y = 6
Divide both sides by 9:
y = 6/9
Simplify:
y = 2/3
Now, substitute y = 2/3 back into the first equation x = y - 4:
x = (2/3) - 4
Multiply 2/3 by 3/3 to have a common denominator:
x = 6/9 - 12/3
Simplify:
x = 6/9 - 36/9
x = -30/9
Simplify the result:
x = -10/3
So the solution to the system is x = -10/3 and y = 2/3.
There are no human answers yet. A form for humans to post answers is coming very soon!