Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
Show that the tangents to the curve X=ln((y^2)-6y+11) ,at the points where X=ln6,meet at the point ((ln6)-(4/3),3)Asked by karl
Show that the tangents to the curve X=ln((y^2)-6y+11) ,at the points where X=ln6,meet at the point ((ln6)-(4/3),3)
Answers
Answered by
Reiny
first of all we need dy/dx for the relation, that would be
1 = (2y(dy/dx) - 6dy/dx)/(y^2 - 6y + 11)
simplifying and solving for dy/dx gave me
dy/dx = (y^2 - 6y + 11)/(2y-6)
then let's sub in x=ln6 into the original
ln6 = ln(y^2 - 6y + 11)
6 = y^2 - 6y + 11
solving as a quadratic, it factored, I got
y = 1 or y = 5
so at the point (ln6,1), dy/dx = -3/2
and at point (ln6,5), dy/dx = +3/2
first tangent:
y-1 = (-3/2)(x-ln6) which reduced to
3x + 2y = 2 + 3ln6 (#1)
second tangent:
y-5 = (3/2)(x-ln6) gave me
3x - 2y = 3ln6 - 10 (#2)
adding #1 and #2 gave me
x = ln6 - 4/3
and carefully subbing that back into #1 gave me y = 3
YES!!!!!
1 = (2y(dy/dx) - 6dy/dx)/(y^2 - 6y + 11)
simplifying and solving for dy/dx gave me
dy/dx = (y^2 - 6y + 11)/(2y-6)
then let's sub in x=ln6 into the original
ln6 = ln(y^2 - 6y + 11)
6 = y^2 - 6y + 11
solving as a quadratic, it factored, I got
y = 1 or y = 5
so at the point (ln6,1), dy/dx = -3/2
and at point (ln6,5), dy/dx = +3/2
first tangent:
y-1 = (-3/2)(x-ln6) which reduced to
3x + 2y = 2 + 3ln6 (#1)
second tangent:
y-5 = (3/2)(x-ln6) gave me
3x - 2y = 3ln6 - 10 (#2)
adding #1 and #2 gave me
x = ln6 - 4/3
and carefully subbing that back into #1 gave me y = 3
YES!!!!!
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.