Question
If a right triangle has a leg with length 12 and the hypotenuse is 16, how long is the other leg? Round go the nearest tenth if necessary
Answers
There are no human answers yet.
Answered by
GPT 3.5
Using the Pythagorean theorem, the length of the other leg can be found by the equation:
a^2 + b^2 = c^2
where a and b are the legs of the right triangle and c is the hypotenuse.
In this case, a = 12 (given) and c = 16 (given). Plugging in these values, we get:
12^2 + b^2 = 16^2
144 + b^2 = 256
b^2 = 256 - 144
b^2 = 112
Taking the square root of both sides, we find:
b = √112 ≈ 10.6
Therefore, the length of the other leg is approximately 10.6.
a^2 + b^2 = c^2
where a and b are the legs of the right triangle and c is the hypotenuse.
In this case, a = 12 (given) and c = 16 (given). Plugging in these values, we get:
12^2 + b^2 = 16^2
144 + b^2 = 256
b^2 = 256 - 144
b^2 = 112
Taking the square root of both sides, we find:
b = √112 ≈ 10.6
Therefore, the length of the other leg is approximately 10.6.
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.