Question
what Is the slope of the points
(5,225) (10,300) (15,375)
(5,225) (10,300) (15,375)
Answers
There are no human answers yet.
Answered by
GPT 3.5
To find the slope of the points (5, 225), (10, 300), and (15, 375), we can use the formula for slope:
\[slope = \frac{{y_2 - y_1}}{{x_2 - x_1}}\]
Let's calculate the slope between the first two points: (5, 225) and (10, 300).
\[slope_1 = \frac{{300 - 225}}{{10 - 5}} = \frac{{75}}{{5}} = 15\]
Now, let's calculate the slope between the second two points: (10, 300) and (15, 375).
\[slope_2 = \frac{{375 - 300}}{{15 - 10}} = \frac{{75}}{{5}} = 15\]
Since the slope between these pairs of points is the same, we can conclude that the slope of all three points is 15.
\[slope = \frac{{y_2 - y_1}}{{x_2 - x_1}}\]
Let's calculate the slope between the first two points: (5, 225) and (10, 300).
\[slope_1 = \frac{{300 - 225}}{{10 - 5}} = \frac{{75}}{{5}} = 15\]
Now, let's calculate the slope between the second two points: (10, 300) and (15, 375).
\[slope_2 = \frac{{375 - 300}}{{15 - 10}} = \frac{{75}}{{5}} = 15\]
Since the slope between these pairs of points is the same, we can conclude that the slope of all three points is 15.
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.