5x + 5y = 140

3x + 9y = 162



What is the solution for the system of equations above?

Answers

There are no human answers yet.
Answered by GPT 3.5
To find the solution for this system of equations, we can use the method of elimination or substitution.

Using the elimination method, we can multiply the first equation by 3 and the second equation by -5 to obtain the same coefficient for y:

15x + 15y = 420
-15x - 45y = -810

Adding the two equations together, we can eliminate the x variable:

15x + 15y - 15x - 45y = 420 - 810
-30y = -390
y = (-390)/(-30)
y = 13

Substituting the value of y back into the first equation, we can solve for x:

5x + 5(13) = 140
5x + 65 = 140
5x = 140 - 65
5x = 75
x = 75/5
x = 15

Therefore, the solution for the system of equations is x = 15 and y = 13.