Kayla’s mom is planning her birthday party. She has a budget of $150. She knows that the food will cost $5 per person. Twelve friends are coming to the party. Which expression represents the amount of money, m , Kayla’s mom has to spend on each guest’s goody bag?(1 point)

Responses

m+12(5)=150
m plus 12 Left Parenthesis 5 Right Parenthesis equals 150

12(m+5)=150
12 Left Parenthesis m plus 5 Right Parenthesis equals 150

5(m+12)=150
5 Left Parenthesis m plus 12 Right Parenthesis equals 150

12m+5=150

User Icon for Bot GPT 3.5 Bot GPT 3.5 answered
11 months ago
Twelve friends are coming to the party, so she has to spend $5 for each friend's goody bag. Therefore, the expression that represents the amount of money Kayla's mom has to spend on each guest's goody bag is: 5(m+12)=150
anonymous anonymous answered
11 months ago
Given the equation 8(n+6)=104 , identify the real-world problem that corresponds to this equation.(1 point)
Responses

A rectangle is divided into two sections. One section has a length of 8 and width of 6 comprised of a 2 by 4 matrix of square boxes. The second section has a length of 8 and width of n comprised of a 3 by 4 matrix of square boxes. Above the rectangle it reads: upper A equals 104 square units.
Image with alt text: A rectangle is divided into two sections. One section has a length of 8 and width of 6 comprised of a 2 by 4 matrix of square boxes. The second section has a length of 8 and width of n comprised of a 3 by 4 matrix of square boxes. Above the rectangle it reads: upper A equals 104 square units.

A rectangle of is divided into two sections. One section has a length of n and a width of 6 comprised of a 2 by 4 matrix of square boxes. The second section has a length of 8 and a width of 6 comprised of a 3 by 4 matrix of square boxes. Above the rectangle it reads: upper A equals 104 square units.
Image with alt text: A rectangle of is divided into two sections. One section has a length of n and a width of 6 comprised of a 2 by 4 matrix of square boxes. The second section has a length of 8 and a width of 6 comprised of a 3 by 4 matrix of square boxes. Above the rectangle it reads: upper A equals 104 square units.

A rectangle is divided into two sections. One section has a length of 8 and a width of n comprised of a 2 by 4 matrix of square boxes. The second section has a width of n plus 6 and length of 8 comprised of a 3 by 4 matrix of square boxes. Above the rectangle it reads: upper A equals 104 square units.
Image with alt text: A rectangle is divided into two sections. One section has a length of 8 and a width of n comprised of a 2 by 4 matrix of square boxes. The second section has a width of n plus 6 and length of 8 comprised of a 3 by 4 matrix of square boxes. Above the rectangle it reads: upper A equals 104 square units.

A rectangle is divided into two sections. One section has a length of n minus 6 and width 8 comprised of a 2 by 4 matrix of square boxes. The second section has a length of n and width of 8 comprised of a 3 by 4 matrix of square boxes. Above the rectangle it reads: upper A equals 104 square units.
Image with alt text: A rectangle is divided into two sections. One section has a length of n minus 6 and width 8 comprised of a 2 by 4 matrix of square boxes. The second section has a length of n and width of 8 comprised of a 3 by 4 matrix of square boxes. Above the rectangle it reads: upper A equals 104 square units.
Skip to navigation
User Icon for Bot GPT 3.5 Bot GPT 3.5 answered
11 months ago
The real-world problem that corresponds to the equation 8(n+6)=104 is:

A rectangle is divided into two sections. One section has a length of n and a width of 6 comprised of a 2 by 4 matrix of square boxes. The second section has a length of 8 and a width of 6 comprised of a 3 by 4 matrix of square boxes. Above the rectangle, it reads: upper A equals 104 square units.
anonymous anonymous answered
11 months ago
Solve −2(4−n)=24 (1 point)
Responses

16
16

−16
negative 16

8
8

−8
User Icon for Bot GPT 3.5 Bot GPT 3.5 answered
11 months ago
To solve the equation −2(4−n)=24, we need to distribute the -2 to both terms inside the parentheses:

-2 * 4 - (-2) * n = 24
-8 + 2n = 24

Next, we can isolate the variable by adding 8 to both sides:

-8 + 2n + 8 = 24 + 8
2n = 32

Divide both sides by 2 to solve for n:

2n/2 = 32/2
n = 16

Therefore, the solution to the equation is n = 16.
anonymous anonymous answered
11 months ago
One-quarter of the difference of a number and 3 is 2. Find the number.(1 point)
Responses

11
11

5/4
5 fourths

20
20

3 1/2
User Icon for Bot GPT 3.5 Bot GPT 3.5 answered
11 months ago
To solve this problem, we need to translate the given information into an equation.

The difference of a number and 3 can be written as (x - 3), where x represents the unknown number.

One-quarter of that difference can be written as (1/4)(x - 3).

According to the problem, this expression is equal to 2:

(1/4)(x - 3) = 2

To find the number x, we can solve this equation. Let's multiply both sides of the equation by 4 to eliminate the fraction:

4(1/4)(x - 3) = 4(2)

Simplifying, we get:

x - 3 = 8

Now, we can isolate x by adding 3 to both sides of the equation:

x - 3 + 3 = 8 + 3

Simplifying further:

x = 11

Therefore, the number is 11.
anonymous anonymous answered
11 months ago
Solve 2/3(x −6)=14 (1 point)
Responses

−27
negative 27

27
27

15
15

−15
User Icon for MOzart MOzart answered
10 months ago
The bot got the first 2 wrong and didn’t answer the last so here’s the whole quick checks answers.

A1. 12(m+5) = 150

A2. A= 104 square units
First box: Width: 8 length: 6 Second box: n

A3. 16

A4. 11

A5. 27

Answers are 100% went back after finishing

Have a day

Don’t always trust bots