Asked by drwls
                We are not going to do that work for you, but will be glad to help you. 
The unit sphere is the sphere with radius 1 centered in the origin. They give you the coordinates of a vector. Compute the dot product of the vector and the local surface area normal and integrate it over the spherical surface area. Then do it again with Gauss' theorem, which involves a volume integral of the divergence of the vector. They should be equal.
We will be glad to critique your work. There is quite a bit involved.
Compute the flux of the vector field F = (3xy2; 3x2y; z3) out of the unit sphere both
directly and using Gauss' Theorem.
Show all work please!!!!!!
Direct computation:
The outward normal on the unit sphere is, of course:
n = (x,y,z)
Take inner product with F:
F dot n =
(3xy^2, 3x^2y, z^3) dot (x,y,z) =
6 x^2y^2 + z^4
Now switch to spherical coordinates:
x = sin(theta) cos(phi)
y = sin(theta) sin(phi)
z = cos(theta)
F dot n =
6 sin^4(theta) cos^2(phi)sin^2(phi)+ cos^4(theta)
Surface element on unit sphere in spherical coordinates is:
sin(theta) d theta d phi
So we have to integrate:
[6 sin^4(theta) cos^2(phi)sin^2(phi)+ cos^4(theta)] sin(theta) d theta d phi
from phi = 0 to 2 pi and theta = 0 to pi.
The integrals are high school level, the result is:
12 pi/5
Now using Gauss Theorem, compute the divergence of F:
div F = d(3xy^2)/dx + d(3x^2y)/dy +
d(z^3)/dz = 3(x^2 + y^2 + z^2) = 3 r^2
We must integrate this over the volume of the unit sphere. The integrand does not depend on the angles so, we can write the integral as:
Integral from 0 to 1 of
3 r^2* 4 pi r^2 dr
= 12 pi/5
            
        The unit sphere is the sphere with radius 1 centered in the origin. They give you the coordinates of a vector. Compute the dot product of the vector and the local surface area normal and integrate it over the spherical surface area. Then do it again with Gauss' theorem, which involves a volume integral of the divergence of the vector. They should be equal.
We will be glad to critique your work. There is quite a bit involved.
Compute the flux of the vector field F = (3xy2; 3x2y; z3) out of the unit sphere both
directly and using Gauss' Theorem.
Show all work please!!!!!!
Direct computation:
The outward normal on the unit sphere is, of course:
n = (x,y,z)
Take inner product with F:
F dot n =
(3xy^2, 3x^2y, z^3) dot (x,y,z) =
6 x^2y^2 + z^4
Now switch to spherical coordinates:
x = sin(theta) cos(phi)
y = sin(theta) sin(phi)
z = cos(theta)
F dot n =
6 sin^4(theta) cos^2(phi)sin^2(phi)+ cos^4(theta)
Surface element on unit sphere in spherical coordinates is:
sin(theta) d theta d phi
So we have to integrate:
[6 sin^4(theta) cos^2(phi)sin^2(phi)+ cos^4(theta)] sin(theta) d theta d phi
from phi = 0 to 2 pi and theta = 0 to pi.
The integrals are high school level, the result is:
12 pi/5
Now using Gauss Theorem, compute the divergence of F:
div F = d(3xy^2)/dx + d(3x^2y)/dy +
d(z^3)/dz = 3(x^2 + y^2 + z^2) = 3 r^2
We must integrate this over the volume of the unit sphere. The integrand does not depend on the angles so, we can write the integral as:
Integral from 0 to 1 of
3 r^2* 4 pi r^2 dr
= 12 pi/5
Answers
                                                    There are no human answers yet.
                                            
                
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.