Asked by Pauline
a theory about moth navigation is that moths fly at a constant angle relative to a light source.
a particular moth flies at 50 degrees to the light source,L, and it measures its bearing 10 times in one revolution.
Hint:one revolution is 360 degrees. 10 times makes the angle R1 L R0 equal to 360/10 (R1 here means the distance between L and the starting point of the moth. R2 is the distance between L and the first time the moth measures its bearing.)
1.)what happens if the number of times the moth measures its bearing increases to a very big number??
2)what does the limiting value appear to be?
3) what will the flight path be for x-->infinitive?
i drew a diagram for question 1 and figured out that as the number of times the moth measures its bearing increases to a very big number, the circle will get smaller and the moth will fly to the light sooner.but i can't figure out a formula for this...
i do not get question number 2.
question 3 is very similar to question number 2 right?? but i am still a little bit confused.=(
i have also worked out a formula for R1 in terms of R0:
R1=R0 times sin50/sin94)
so R(n) for all path is:
(let the angle the moth flies to the light source be A, and let times measured in one rev be B)
R(n)=sinA/sin{(360/B) +A}
i could try out question 1 and 3 by changing the value of B in that formula, but i don't know how to make a formula for question 1 and 3 by doing so...
I am really sorry if this looked very messy...but i will be so happy if some one can help me!thanks!! =)
a particular moth flies at 50 degrees to the light source,L, and it measures its bearing 10 times in one revolution.
Hint:one revolution is 360 degrees. 10 times makes the angle R1 L R0 equal to 360/10 (R1 here means the distance between L and the starting point of the moth. R2 is the distance between L and the first time the moth measures its bearing.)
1.)what happens if the number of times the moth measures its bearing increases to a very big number??
2)what does the limiting value appear to be?
3) what will the flight path be for x-->infinitive?
i drew a diagram for question 1 and figured out that as the number of times the moth measures its bearing increases to a very big number, the circle will get smaller and the moth will fly to the light sooner.but i can't figure out a formula for this...
i do not get question number 2.
question 3 is very similar to question number 2 right?? but i am still a little bit confused.=(
i have also worked out a formula for R1 in terms of R0:
R1=R0 times sin50/sin94)
so R(n) for all path is:
(let the angle the moth flies to the light source be A, and let times measured in one rev be B)
R(n)=sinA/sin{(360/B) +A}
i could try out question 1 and 3 by changing the value of B in that formula, but i don't know how to make a formula for question 1 and 3 by doing so...
I am really sorry if this looked very messy...but i will be so happy if some one can help me!thanks!! =)
Answers
Answered by
Molly
ya u do this by eating some moths, there ya go
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.