infinity of the summation n=1: (e^n)/(n!) [using the ratio test]

my work so far:

= lim (n->infinity) | [(e^n+1)/((n+1)!)] / [(e^n)/(n!)] |

= lim (n->infinity) | [(e^n+1)/((n+1)!)] * [(n!)/(e^n)] |

= lim (n->infinity) | ((e^n)(e^1)(n!)) / ((n+1)(n!)(e^n)) |
..the e^n & n! cancels out

= lim (n->infinity) | (e^1) / (n+1) |

im stuck here.. how do i finish this?
and also to find out if it's Divergent (L>1), convergent (L<1), or fails (L=1)?

The limit is zero. So, L = 0 therefore the series is convergent.

The value of the summation is e^e - 1

Similar Questions
  1. Posted by COFFEE on Sunday, July 29, 2007 at 6:32pm.infinity of the summation n=1: (e^n)/(n!) [using the ratio test] my work so
    1. answers icon 0 answers
  2. infinity of the summation n=1: (e^n)/(n!) [using the ratio test]my work so far: = lim (n->infinity) | [(e^n+1)/((n+1)!)] /
    1. answers icon 0 answers
  3. infinity of the summation n=0: ((n+2)/(10^n))*((x-5)^n).. my work so far. i used the ratio test = lim (n-->infinity) |
    1. answers icon 1 answer
  4. infinity of the summation n=0: ((n+2)/(10^n))*((x-5)^n).. my work so far. i used the ratio test = lim (n-->infinity) |
    1. answers icon 0 answers
more similar questions