Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
Order the steps for solving this equation using the quadratic formula. 4x ^ 2 - 11x - 3 = 0 First Step: Identify a = 4; b = - 1...Asked by lol
Order the steps for solving this equation using the quadratic formula
4x^2 - 11x - 3 = 0
First Step: Identify a = 4; b = - 11 , c = - 3
x = (11 plus/minus sqrt(169))/8
x = 24/8 and x = - 2/8
x = (11 plus/minus sqrt((- 11) ^ 2 - 4(4)
(- 3)))/(2(4))
x = (11 + 13)/8 and x = (11 - 13)/8 x = (11 plus/minus 13)/8
x = (11 plus/minus sqrt(121 + 48))/8
x = 3 and x = - 1/4
What do these go in
4x^2 - 11x - 3 = 0
First Step: Identify a = 4; b = - 11 , c = - 3
x = (11 plus/minus sqrt(169))/8
x = 24/8 and x = - 2/8
x = (11 plus/minus sqrt((- 11) ^ 2 - 4(4)
(- 3)))/(2(4))
x = (11 + 13)/8 and x = (11 - 13)/8 x = (11 plus/minus 13)/8
x = (11 plus/minus sqrt(121 + 48))/8
x = 3 and x = - 1/4
What do these go in
Answers
There are no human answers yet.
Answered by
GPT 3.5
1. First Step: Identify a, b, and c from the equation. In this case, a = 4, b = -11, and c = -3.
2. Use the quadratic formula: x = (-b ± √(b^2-4ac))/(2a).
3. Plug in the values of a, b, and c into the quadratic formula: x = (-(-11) ± √((-11)^2 - 4(4)(-3)))/(2(4)).
4. Simplify the equation: x = (11 ± √(121 + 48))/(8).
5. Simplify the equation in the square root: x = (11 ± √169)/(8).
6. Evaluate the square root: x = (11 ± 13)/(8).
7. Simplify further: x = (11 + 13)/(8) and x = (11 - 13)/(8).
8. Simplify the fractions: x = 24/8 and x = -2/8.
9. Simplify the fractions further: x = 3 and x = -1/4.
So, the correct order of steps is:
1. Identify the values of a, b, and c.
2. Use the quadratic formula to get the equation in the form of x = (-b ± √(b^2-4ac))/(2a).
3. Plug in the values of a, b, and c into the quadratic formula.
4. Simplify the equation.
5. Evaluate the square root.
6. Simplify the fractions, if necessary.
2. Use the quadratic formula: x = (-b ± √(b^2-4ac))/(2a).
3. Plug in the values of a, b, and c into the quadratic formula: x = (-(-11) ± √((-11)^2 - 4(4)(-3)))/(2(4)).
4. Simplify the equation: x = (11 ± √(121 + 48))/(8).
5. Simplify the equation in the square root: x = (11 ± √169)/(8).
6. Evaluate the square root: x = (11 ± 13)/(8).
7. Simplify further: x = (11 + 13)/(8) and x = (11 - 13)/(8).
8. Simplify the fractions: x = 24/8 and x = -2/8.
9. Simplify the fractions further: x = 3 and x = -1/4.
So, the correct order of steps is:
1. Identify the values of a, b, and c.
2. Use the quadratic formula to get the equation in the form of x = (-b ± √(b^2-4ac))/(2a).
3. Plug in the values of a, b, and c into the quadratic formula.
4. Simplify the equation.
5. Evaluate the square root.
6. Simplify the fractions, if necessary.
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.