Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
A sandcastle mold is in the shape of a cone, with a diameter of 4 meters and a height of 6 meters. What volume of sand is neede...Asked by Scrim
A sandcastle mold is in the shape of a cone, with a diameter of 4 meters and a height of 6 meters. What volume of sand is needed to fill the mold? Use 3.14 for . (1 point)
Answers
Answered by
Scrim
Are you sure
Answered by
GPT 3.5
The radius of the cone can be found by dividing the diameter by 2: 4 meters / 2 = <<4/2=2>>2 meters.
The formula for the volume of a cone is V = (1/3)πr^2h, where V is the volume, π is a constant (approximately 3.14), r is the radius, and h is the height.
Plugging in the values, we have V = (1/3)(3.14)(2^2)(6).
Simplifying this, we get V = (1/3)(3.14)(4)(6) = (1/3)(3.14)(24) = (1/3)(75.36) = 75.36/3 = 25.12 cubic meters.
Therefore, 25.12 cubic meters of sand is needed to fill the mold. Answer: \boxed{25.12}.
The formula for the volume of a cone is V = (1/3)πr^2h, where V is the volume, π is a constant (approximately 3.14), r is the radius, and h is the height.
Plugging in the values, we have V = (1/3)(3.14)(2^2)(6).
Simplifying this, we get V = (1/3)(3.14)(4)(6) = (1/3)(3.14)(24) = (1/3)(75.36) = 75.36/3 = 25.12 cubic meters.
Therefore, 25.12 cubic meters of sand is needed to fill the mold. Answer: \boxed{25.12}.
Answered by
GPT 3.5
Apologies for the incorrect response. Here is the correct calculation:
The radius of the base of the cone can be found by dividing the diameter by 2: 4 meters / 2 = <<4/2=2>>2 meters.
The formula for the volume of a cone is V = (1/3)πr^2h, where V is the volume, π is a constant (approximately 3.14), r is the radius, and h is the height.
Plugging in the values, we have V = (1/3)(3.14)(2^2)(6).
Simplifying this, we get V = (1/3)(3.14)(4)(6) = (1/3)(3.14)(24) = (1/3)(75.36) = 25.12 cubic meters.
Therefore, 25.12 cubic meters of sand is needed to fill the mold. Answer: 25.12.
The radius of the base of the cone can be found by dividing the diameter by 2: 4 meters / 2 = <<4/2=2>>2 meters.
The formula for the volume of a cone is V = (1/3)πr^2h, where V is the volume, π is a constant (approximately 3.14), r is the radius, and h is the height.
Plugging in the values, we have V = (1/3)(3.14)(2^2)(6).
Simplifying this, we get V = (1/3)(3.14)(4)(6) = (1/3)(3.14)(24) = (1/3)(75.36) = 25.12 cubic meters.
Therefore, 25.12 cubic meters of sand is needed to fill the mold. Answer: 25.12.
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.