expand- (x+3)^4

1 answer

To expand (x+3)^4, we can use the binomial theorem. The binomial theorem states that for any real numbers a and b, and any positive integer n, the expansion of (a+b)^n can be represented by the sum of the binomial coefficients multiplied by the respective powers of a and b.

In this case, we have a = x and b = 3, and we want to find the expansion of (x+3)^4.

Using the binomial theorem, the expansion can be written as:

C(4,0) x^4 * 3^0 + C(4,1) x^3 * 3^1 + C(4,2) x^2 * 3^2 + C(4,3) x^1 * 3^3 + C(4,4) x^0 * 3^4

Simplifying further, we have:

1 * x^4 * 1 + 4 * x^3 * 3 + 6 * x^2 * 9 + 4 * x * 27 + 1 * 3^4

This simplifies to:

x^4 + 12x^3 + 54x^2 + 108x + 81

Therefore, the expanded form of (x+3)^4 is x^4 + 12x^3 + 54x^2 + 108x + 81.
Similar Questions
  1. As a result of French and Indian WarSpanish settlement could expand throughout Florida. French settlement could expand east of
    1. answers icon 1 answer
  2. Answer the questions:Expand 5(y + 2). Expand -5(-3 - 11g). Expand 1/3(q - 6). Expand 2/5(-5c + 10). Expand -7/6(3g + 2).
    1. answers icon 4 answers
    1. answers icon 1 answer
  3. QuestionWhy did the Portuguese want to explore in the 1400s? (1 point) Responses They wanted to expand trade. They wanted to
    1. answers icon 1 answer
more similar questions