Asked by Breanna

Find all of the zeros of the polynomial function and state the multiplicity of each.

f (x) = (x^2 – 16)^2

A. – 4 with multiplicity 2 and 4 with multiplicity 2

B. – 4i with multiplicity 2 and 4i with multiplicity 2

C. 4 with multiplicity 2

D. 4 with multiplicity 4

Answers

Answered by MathMate
f(x) = (x<sup>2</sup>-16)<sup>2</sup>
= ((x+4)(x-4))<sup>2</sup>
= (x+4)<sup>2</sup>(x-4)<sup>2</sup>
Can you take it from here?
Answered by Breanna
Yes this is what I got, is it correct?

C. 4 with multiplicity 2 ?
Answered by MathMate
No, it is not the case. There are four roots for a quartic equation, so one single root with multiplicity of 2 does not suffice.

When you have the factor (x+4)<sup>2</sup>, that implies x=-4 with multiplicity of 2.
If you repeat the process with the factor (x-4)<sup>2</sup>, you will find the answer you need.
Answered by Breanna
Wow I am confused now. So does the answer include the i? which is

B. – 4i with multiplicity 2 and 4i with multiplicity 2

OR

A. – 4 with multiplicity 2 and 4 with multiplicity 2

I am goin to say A but I could be wrong.
Answered by MathMate
A is correct. The roots are real, so there is no i involved.
There are two distinct roots, ±4 each with multiplicity of 2. So A is the answer.
There are no AI answers yet. The ability to request AI answers is coming soon!