To solve the quadratic equation 5x^2 + 75x = 0 by factoring out the GCF, we first need to find the greatest common factor of the two terms.
The GCF of 5x^2 and 75x is 5x. We can factor out 5x from both terms:
5x^2 + 75x = 5x(x + 15) = 0
Now we can set each factor equal to zero:
5x = 0 or x + 15 = 0
Solving these equations gives us:
x = 0 or x = -15
Therefore, the solutions to the quadratic equation are x = 0 and x = -15.
Solve the quadratic equation 5x2+75x=0 by factoring out the GCF.(1 point)
Responses
The solutions are x=0 and x=15.
The solutions are x equals 0 and x equals 15 .
The solutions are x=−15 and x=−5.
The solutions are x equals negative 15 and x equals negative 5 .
The solutions are x=0 and x=5.
The solutions are x equals 0 and x equals 5 .
The solutions are x=−15 and x=0.
The solutions are x equals negative 15 and x equals 0 .
3 answers
a b c or d
c