In a direct variation, the relationship between two variables can be expressed as y = kx, where y and x are the variables and k is a constant.
To find the value of n, we can set up a direct variation equation using the given points.
We are given the points (3, -18) and (-2, n).
Using the direct variation equation y = kx, we can plug in the values from the first point: -18 = k(3).
Solving for k, we have k = -18/3 = -6.
Now we can use the value of k to find n using the second point: n = k(-2) = -6(-2) = 12.
Therefore, the value of n is 12.
A direct variation includes the points (3,-18) and (-2,n) find n. Write and solve a direct variation equation to find the answer.
1 answer