Asked by Laurie

Consider the quadratic function
f(x) = – x^2 + 10x – 26. Determine whether there is a maximum or
minimum value and find that value.

Answers

Answered by Marth
This is algebra?

If you have not learned differentiation, perhaps your teacher wants you to use a calculator to find the extrema. (If you have, disregard this paragraph).

Take the derivative of f(x):
f'(x)= -2x + 10

Set f'(x) = 0
-2x + 10 = 0
10 = 2x
x = 5

Now use a sign line to find whether x=5 is a minimum or maximum.

f'(0) = +
f'(10) = -

x=5 is a maximum because f'(x) changes signs from + to -

Answered by Reiny
complete the square,
f(x) = – x^2 + 10x – 26
= - [x^2 - 10x + 25 - 25] - 26
= -(x-5)^2 + 25 - 26
= -(x-5)^2 - 1

so the vertex is (5,-1) and since the parabola opens downwards, it will be a maximum point and the maximum value of the function is -1
Answered by Laurie
I do not think these answers are right. I get somethin else and 5 is not an option. Here are the choices

A. Minimum is 25
B. Minimum is -51
C. Maximum is -1
D. Maximum us -51
Answered by Marth
5 is the value at which the maximum occurs. f(5) = -1, so choice C.
Answered by Laurie
I was thinking that as well! Thanks!
Answered by Reiny
that is exactly the answer I gave you, read my last line of my reply please
There are no AI answers yet. The ability to request AI answers is coming soon!

Related Questions