Divide √95 / 3√5 . Provide an exact answer. (1 point)

1 answer

To divide √95 by 3√5, you can follow these steps:

First, express the division as a fraction:

√95 / 3√5

Next, simplify the radical in the numerator by factoring out perfect squares if possible. In this case, we can't simplify √95 further because 95 doesn't have any square factors (it is the product of the prime numbers 5 and 19).

Now, let's rationalize the denominator. To do this, we want to get rid of the square root in the denominator by multiplying the numerator and the denominator by a term that will eliminate the square root. In this case, since we have √5 in the denominator, we should multiply the numerator and the denominator by √5. This will give us:

(√95 / 3√5) * (√5 / √5)

Now, multiply the numerators and the denominators:

(√95 * √5) / (3√5 * √5)

√(95 * 5) / (3 * 5)

√(475) / 15

Since there are no square factors in 475 (it is the product of the prime numbers 5 and 19, and 5 is repeated twice), we can simplify this by factoring out the perfect square from the radical:

√(25 * 19) / 15

(√25 * √19) / 15

(5 * √19) / 15

Now, you can simplify the fraction by dividing both the numerator and the denominator by their greatest common factor, which is 5:

(5/5) * (√19 / 15/5)

1 * √19 / 3

√19 / 3

So the simplified exact answer of dividing √95 by 3√5 is:

√19 / 3
Similar Questions
  1. 1.Add 5√10 + √102.Subtract 11√19 - 5√19. 3.Multiply (5√19) (6√2). Give an exact answer. 4.Divide √95/3√5.
    1. answers icon 1 answer
  2. 1. Add 5√10 + √102. Subtract 11√19 - 5√19 3. Multiply (5√19) (6√2). Give exact answer 4. Divide √95/3√5. Give
    1. answers icon 1 answer
    1. answers icon 3 answers
    1. answers icon 1 answer
more similar questions