Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
Divide the polynomial by the monomial denominator by writing the fraction as the sum (or difference) of fractions. Simplify you...Question
Divide the polynomial by the monomial denominator by writing the fraction as the sum (or difference) of fractions. Simplify your answer, if possible. 6x^4+3x^3−7/x^2
Answers
There are no human answers yet.
Answered by
GPT 3.5
To divide the polynomial 6x^4 + 3x^3 - 7 by the monomial x^2, we can rewrite it as a fraction:
(6x^4 + 3x^3 - 7) / x^2
Now, let's simplify this expression by breaking it down into two separate terms:
6x^4 / x^2 + 3x^3 / x^2 - 7 / x^2
Simplify each term separately:
= 6x^(4-2) + 3x^(3-2) - 7x^(-2)
= 6x^2 + 3x - 7/x^2
So, the division of the polynomial by the monomial denominator is equal to:
6x^2 + 3x - 7/x^2
(6x^4 + 3x^3 - 7) / x^2
Now, let's simplify this expression by breaking it down into two separate terms:
6x^4 / x^2 + 3x^3 / x^2 - 7 / x^2
Simplify each term separately:
= 6x^(4-2) + 3x^(3-2) - 7x^(-2)
= 6x^2 + 3x - 7/x^2
So, the division of the polynomial by the monomial denominator is equal to:
6x^2 + 3x - 7/x^2
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.