Asked by Z32
f"(x)=5x+3 and f'(-2)=-3 and f(2)=-5
Find f'(x) and find f(2).
Find f'(x) and find f(2).
Answers
Answered by
Reiny
looks like you are doing basic integration at the beginner's level.
Remember that integration is the "reverse" of differentiation.
So do this intuitively.
Ask yourself, "What terms did I have so that its derivative is 5x +3 ?"
Wouldn't that have been (5/2)x^2 + 3x + (some constant) ???
Now that would give you f'(x)
and you are given f'(-2) = 3 so you can find the constant.
Then repeat this to get f(x)
let me know what your answer is.
Remember that integration is the "reverse" of differentiation.
So do this intuitively.
Ask yourself, "What terms did I have so that its derivative is 5x +3 ?"
Wouldn't that have been (5/2)x^2 + 3x + (some constant) ???
Now that would give you f'(x)
and you are given f'(-2) = 3 so you can find the constant.
Then repeat this to get f(x)
let me know what your answer is.
Answered by
gnozahs
I couldn't figure it out.
Answered by
Z32
Ok, so I got the first part done. I got 5/2 x^2 +3x -7
Now I'm stuck on the f(2)= part.
I've gotten 5/6 x^3 +3/2 x^2 -7x + C
But what do I do from there?
Now I'm stuck on the f(2)= part.
I've gotten 5/6 x^3 +3/2 x^2 -7x + C
But what do I do from there?
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.