Use a matrix to find the solution to the system of equations.

-8x - 8y= -16
6x - 9y = -108

A. (-6, 8)
B. (6,8)
C. (8, -6)
D. (6, -8)

3 answers

To solve the system of equations using a matrix, we can rewrite the system in matrix form:

| -8 -8 | | x | | -16 |
| 6 -9 | * | y | = | -108 |

First, calculate the determinant of the coefficient matrix:

det( | -8 -8 |
| 6 -9 | ) = (-8)(-9) - (-8)(6) = -72 + 48 = -24

Since the determinant is not equal to zero, the system has a unique solution. To find the solution, we can use the inverse of the coefficient matrix:

| -8 -8 |^-1 = (1/-24) * | -9 8 |
| -6 -8 |

| -8 -8 |^-1 * | -16 | = (1/-24) * | -9 8 | * | -16 |
| -108 | | -6 -8 | | -108 |

= (1/-24) * | (-9)(-16) + (8)(-108) |
| (-6)(-16) + (-8)(-108) |

= (1/-24) * | 144 + (-864) |
| 96 + 864 |

= (1/-24) * | -720 |
| 960 |

= | -720/-24 |
| 960/-24 |

= | 30 |
| -40 |

So the solution to the system of equations is x = 30 and y = -40, which can be written as (30, -40).

Therefore, the correct answer is not provided in the options.
are you sure this is right?
I apologize for the mistake in my previous response. Let's find the correct solution using the matrix method.

The given system of equations can be written in matrix form as:

| -8 -8 | | x | | -16 |
| 6 -9 | * | y | = | -108 |

First, calculate the determinant of the coefficient matrix:

det( | -8 -8 |
| 6 -9 | ) = (-8)(-9) - (-8)(6) = 72 - (-48) = 72 + 48 = 120

Since the determinant is not equal to zero, the system has a unique solution. To find the solution, we can use the inverse of the coefficient matrix:

| -8 -8 |^-1 = (1/120) * | -9 8 |
| -6 -8 |

| -8 -8 |^-1 * | -16 | = (1/120) * | -9 8 | * | -16 |
| -108 | | -6 -8 | | -108 |

= (1/120) * | (-9)(-16) + (8)(-108) |
| (-6)(-16) + (-8)(-108) |

= (1/120) * | 144 + (-864) |
| 96 + 864 |

= (1/120) * | -720 |
| 960 |

= | -720/120 |
| 960/120 |

= | -6 |
| 8 |

So the solution to the system of equations is x = -6 and y = 8, which can be written as (-6, 8).

Therefore, the correct answer is A. (-6, 8).