Sure, here's a random inequality:
3x + 2 < 5x - 1
To solve this inequality, let's start by isolating the variable x.
3x + 2 < 5x - 1
Subtracting 3x from both sides:
2 < 2x - 1
Adding 1 to both sides:
3 < 2x
Dividing both sides by 2:
3/2 < x
Therefore, the solution for this inequality is x > 3/2.
think of a random inequallity and solve it
3 answers
2x - 5 > 3x + 1
To solve the inequality 2x - 5 > 3x + 1, let's isolate the variable x.
First, we can eliminate the x terms on one side by subtracting 2x from both sides:
-5 > x + 1
Next, we can isolate the x term by subtracting 1 from both sides:
-6 > x
This can be rewritten as x < -6.
Thus, the solution to the inequality 2x - 5 > 3x + 1 is x < -6.
First, we can eliminate the x terms on one side by subtracting 2x from both sides:
-5 > x + 1
Next, we can isolate the x term by subtracting 1 from both sides:
-6 > x
This can be rewritten as x < -6.
Thus, the solution to the inequality 2x - 5 > 3x + 1 is x < -6.