Let g(x) = 10-x/2+x
a. Find g(-1)
b. state the domain of the function
10-x/2+x
c. Find g (t + 1) and simplify as much as possible
5 answers
were do you get t from there is no t in the equation?
I answered this question a few days ago. You need to use parentheses to clarify what the function is. Are you the person who asked it before?
g(- 1) = 10 - (-1)/2 + - 1 = 19/2 nineteen over two
b. all reals
c. 21 + t
I think this is correct, I am rusty.
b. all reals
c. 21 + t
I think this is correct, I am rusty.
Thanks for all your help, but I still do not understand how you come up with the answers you do. This is what I got
(a) Find g (¨C1).
(gx)= (10-x) / (2+x)
then g (-1) = (10-(-1))/ (2+ (-1))
= 11/1 = 11
(b)The domain is the set of all real numbers except x=-2
Domain = {x ©¦ x (the 'is an element' symbol) R, x ¡Ù -2}
(c) Find g (t + 1) and simplify as much as possible. Show work.
g (t+1)
= (10 - (t+1))/ (2+ (t+1))
= (9-t)/ (3+t)
Are any of these correct? Thanks!
(a) Find g (¨C1).
(gx)= (10-x) / (2+x)
then g (-1) = (10-(-1))/ (2+ (-1))
= 11/1 = 11
(b)The domain is the set of all real numbers except x=-2
Domain = {x ©¦ x (the 'is an element' symbol) R, x ¡Ù -2}
(c) Find g (t + 1) and simplify as much as possible. Show work.
g (t+1)
= (10 - (t+1))/ (2+ (t+1))
= (9-t)/ (3+t)
Are any of these correct? Thanks!
The symbols are not displaying correctly. So here is what I got once again.
(a) Find g (–1).
(gx)= (10-x) / (2+x)
then g (-1) = (10-(-1))/ (2+ (-1))
= 11/1 = 11
b. The domain is the set of all real numbers except x=-2
(c) Find g (t + 1) and simplify as much as possible. Show work.
g (t+1)
= (10 - (t+1))/ (2+ (t+1))
= (9-t)/ (3+t)
Are these correct? Thanks!
(a) Find g (–1).
(gx)= (10-x) / (2+x)
then g (-1) = (10-(-1))/ (2+ (-1))
= 11/1 = 11
b. The domain is the set of all real numbers except x=-2
(c) Find g (t + 1) and simplify as much as possible. Show work.
g (t+1)
= (10 - (t+1))/ (2+ (t+1))
= (9-t)/ (3+t)
Are these correct? Thanks!