Asked by COFFEE
Please check my work:
Find the hydrostatic pressure on one end of a water trough full of water, the end of which is a trapezoid with given dimensions: top of trapezoid = 20 feet, sides of trapezoid both = 8 feet, bottom of trapezoid = 12 feet.
Depth of water = 8 feet
Density of water = 62.4 lb/ft^3
gravity = 32.15 ft/s^2
a/(8-xi*) = (4ft)/(8ft)
a = (8-xi*)/2 = 4 - (xi/2)
Wi = 2(6+a) = 2(6+4-(1/2)xi*)=20 - xi*
Ai = Wi*delta x = (20-xi*)delta x
Pi = rho*g*d
Pi = (62.4 lb/ft^3)(32.15 ft/s^2)xi
Fi = Pi*Ai
Fi = (62.4 b/ft^3)(32.1/s^2)xi*(20-xi*) delta x
Fi = Integral from 0 to 8 of:
(62.4)(32.15)x(20-x)dx
Fi = 2006.16*Integral 0 to 8 of: (20x-x^2)dx
=2006.16[10x^2-(x^3)/3] evaluated at 0 and 8
=9.42 x 10^5 (what are the units here? lb/(ft^3*s^2)???
Your density of water in lbs/ft^3 is the weight of water at sea level. It is not mass density. So no need to multiply by 32 ft/sec to turn into a force. That is one error.
I don't follow your work, I probably need a diagram to see what your x and dx is. But I know the area of the end is appx 16*6 or appx 100 ft squared (engineering estimate)and the average depth is about 3 ft, so the area*density water*depth is about E2*62*3 appx 18K lbs, which is about half of your adjusted answer (adjusted by dividing by 32). Recheck your calcs.
also, your depth is wrong. If the slanted sides are 8 ft, the depth is about six feet.
Find the hydrostatic pressure on one end of a water trough full of water, the end of which is a trapezoid with given dimensions: top of trapezoid = 20 feet, sides of trapezoid both = 8 feet, bottom of trapezoid = 12 feet.
Depth of water = 8 feet
Density of water = 62.4 lb/ft^3
gravity = 32.15 ft/s^2
a/(8-xi*) = (4ft)/(8ft)
a = (8-xi*)/2 = 4 - (xi/2)
Wi = 2(6+a) = 2(6+4-(1/2)xi*)=20 - xi*
Ai = Wi*delta x = (20-xi*)delta x
Pi = rho*g*d
Pi = (62.4 lb/ft^3)(32.15 ft/s^2)xi
Fi = Pi*Ai
Fi = (62.4 b/ft^3)(32.1/s^2)xi*(20-xi*) delta x
Fi = Integral from 0 to 8 of:
(62.4)(32.15)x(20-x)dx
Fi = 2006.16*Integral 0 to 8 of: (20x-x^2)dx
=2006.16[10x^2-(x^3)/3] evaluated at 0 and 8
=9.42 x 10^5 (what are the units here? lb/(ft^3*s^2)???
Your density of water in lbs/ft^3 is the weight of water at sea level. It is not mass density. So no need to multiply by 32 ft/sec to turn into a force. That is one error.
I don't follow your work, I probably need a diagram to see what your x and dx is. But I know the area of the end is appx 16*6 or appx 100 ft squared (engineering estimate)and the average depth is about 3 ft, so the area*density water*depth is about E2*62*3 appx 18K lbs, which is about half of your adjusted answer (adjusted by dividing by 32). Recheck your calcs.
also, your depth is wrong. If the slanted sides are 8 ft, the depth is about six feet.
Answers
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.