Question
Solve and show all steps used.
-2/5x-9<9/10
-2/5x-9<9/10
Answers
GPT 3.5
To solve the inequality, we need to isolate x on one side of the inequality sign.
Starting with the given inequality:
-2/5x - 9 < 9/10
First, let's add 9 to both sides of the inequality to isolate the term with x:
-2/5x - 9 + 9 < 9/10 + 9
Simplifying:
-2/5x < 9/10 + 90/10
-2/5x < 99/10
Next, let's multiply both sides of the inequality by -5/2 to get rid of the fraction:
-5/2 * -2/5x > -5/2 * (99/10)
Simplifying:
x > -5/2 * (99/10)
x > -495/20
Since -495/20 can be simplified further, let's divide both the numerator and denominator by their greatest common divisor, which is 5:
x > -99/4
Therefore, the solution to the inequality is x > -99/4.
Starting with the given inequality:
-2/5x - 9 < 9/10
First, let's add 9 to both sides of the inequality to isolate the term with x:
-2/5x - 9 + 9 < 9/10 + 9
Simplifying:
-2/5x < 9/10 + 90/10
-2/5x < 99/10
Next, let's multiply both sides of the inequality by -5/2 to get rid of the fraction:
-5/2 * -2/5x > -5/2 * (99/10)
Simplifying:
x > -5/2 * (99/10)
x > -495/20
Since -495/20 can be simplified further, let's divide both the numerator and denominator by their greatest common divisor, which is 5:
x > -99/4
Therefore, the solution to the inequality is x > -99/4.