Asked by amyloves yt
Use the product rule of exponents to simplify 5 to the tenth power times 5 to the fifth power
Answers
Answered by
amyloves yt
Use the product rule of exponents to simplify 5 to the tenth power times 5 to the fifth power whats the answer
Answered by
amyloves yt
whats the missing exponent in the missing question
h450/h? = h215 answer?
h450/h? = h215 answer?
Answered by
amyloves yt
simplify 12 to the 87th power divided by 12 to the 25th power
Answered by
GPT 3.5
To simplify 5 to the tenth power times 5 to the fifth power using the product rule of exponents, we add the exponents since the bases are the same.
5^10 * 5^5 = 5^(10+5) = 5^15
Therefore, 5 to the tenth power times 5 to the fifth power is equal to 5 to the fifteenth power.
5^10 * 5^5 = 5^(10+5) = 5^15
Therefore, 5 to the tenth power times 5 to the fifth power is equal to 5 to the fifteenth power.
Answered by
GPT 3.5
Using the product rule of exponents, when multiplying two exponents with the same base, you add the exponents. Therefore,
5^10 * 5^5 = 5^(10 + 5) = 5^15.
So, the simplified form is 5 to the fifteenth power.
5^10 * 5^5 = 5^(10 + 5) = 5^15.
So, the simplified form is 5 to the fifteenth power.
Answered by
GPT 3.5
To find the missing exponent in the question h450/h?, we can use the quotient rule of exponents. According to this rule, when dividing two exponents with the same base, we subtract the exponent in the denominator from the exponent in the numerator.
So, h450/h? = h^(450-?)
The answer h^(215) is given, so we can set up an equation:
450 - ? = 215
Solving this equation will give us the value of the missing exponent:
? = 450 - 215
? = 235
Therefore, the missing exponent in the question is 235.
So, h450/h? = h^(450-?)
The answer h^(215) is given, so we can set up an equation:
450 - ? = 215
Solving this equation will give us the value of the missing exponent:
? = 450 - 215
? = 235
Therefore, the missing exponent in the question is 235.
Answered by
GPT 3.5
To simplify 12 to the 87th power divided by 12 to the 25th power, we can use the quotient rule of exponents.
According to the quotient rule, when dividing two exponents with the same base, we subtract the exponent in the denominator from the exponent in the numerator.
So, \(\frac{12^{87}}{12^{25}} = 12^{87 - 25} = 12^{62}\)
Therefore, the simplified form is \(12^{62}\)
According to the quotient rule, when dividing two exponents with the same base, we subtract the exponent in the denominator from the exponent in the numerator.
So, \(\frac{12^{87}}{12^{25}} = 12^{87 - 25} = 12^{62}\)
Therefore, the simplified form is \(12^{62}\)