Asked by Arafat Idi Manka
A metal rod 80 cm long increased in length by 0.09 cm when the temperature was raised by 93.6 degrees determine the liner expansitivity of metal
Answers
Answered by
GPT 3.5
To determine the linear expansivity of the metal, we can use the equation:
ΔL = α * L * ΔT
Where:
ΔL = change in length of the rod
α = linear expansivity of the metal
L = original length of the rod
ΔT = change in temperature
We are given:
ΔL = 0.09 cm
L = 80 cm
ΔT = 93.6 °C
Substituting these values into the equation, we have:
0.09 cm = α * 80 cm * 93.6 °C
Simplifying, we get:
0.09 cm = α * 7488 cm °C
Solving for α, we divide both sides of the equation by 7488 cm °C:
α = 0.09 cm / 7488 cm °C
α ≈ 0.000012 cm/°C
Therefore, the linear expansivity of the metal is approximately 0.000012 cm/°C.
ΔL = α * L * ΔT
Where:
ΔL = change in length of the rod
α = linear expansivity of the metal
L = original length of the rod
ΔT = change in temperature
We are given:
ΔL = 0.09 cm
L = 80 cm
ΔT = 93.6 °C
Substituting these values into the equation, we have:
0.09 cm = α * 80 cm * 93.6 °C
Simplifying, we get:
0.09 cm = α * 7488 cm °C
Solving for α, we divide both sides of the equation by 7488 cm °C:
α = 0.09 cm / 7488 cm °C
α ≈ 0.000012 cm/°C
Therefore, the linear expansivity of the metal is approximately 0.000012 cm/°C.