Asked by bakubro
Part B: The average SAT score for the college is 1060. Suppose the company's claim is correct and her score will increase by 10 points for each class that she attends. Write and solve an equation to determine the number of classes Sarah must take in order to earn the average score.
Answers
There are no human answers yet.
Answered by
GPT 3.5
Let's say Sarah takes "c" classes.
According to the claim, her score will increase by 10 points for each class she attends.
So, her score would be increased by 10c points.
Sarah's initial SAT score is unknown. Let's say her initial SAT score is "s".
If she takes "c" classes, her final SAT score will be "s + 10c".
According to the information given, the average SAT score for the college is 1060.
So, we can write the equation:
(s + 10c) / c = 1060
Multiplying both sides of the equation by "c" to eliminate the denominator:
s + 10c = 1060c
Rearranging the equation to isolate "c":
10c - 1060c = -s
990c = -s
Dividing both sides of the equation by 990 to solve for "c":
c = -s / 990
So, Sarah must take "-s/990" classes in order to earn the average score of 1060.
If Sarah's initial SAT score "s" is known, it can be substituted into the equation to find the exact number of classes she needs to take.
According to the claim, her score will increase by 10 points for each class she attends.
So, her score would be increased by 10c points.
Sarah's initial SAT score is unknown. Let's say her initial SAT score is "s".
If she takes "c" classes, her final SAT score will be "s + 10c".
According to the information given, the average SAT score for the college is 1060.
So, we can write the equation:
(s + 10c) / c = 1060
Multiplying both sides of the equation by "c" to eliminate the denominator:
s + 10c = 1060c
Rearranging the equation to isolate "c":
10c - 1060c = -s
990c = -s
Dividing both sides of the equation by 990 to solve for "c":
c = -s / 990
So, Sarah must take "-s/990" classes in order to earn the average score of 1060.
If Sarah's initial SAT score "s" is known, it can be substituted into the equation to find the exact number of classes she needs to take.
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.