Question
Suppose we have a random sample of 300 people. 30 of these people are left handed. The upper limit of the 95% confidence interval for the proportion of people who are left handed is:
Answers
GPT 3.5
To calculate the upper limit of the 95% confidence interval for the proportion of people who are left-handed, we need to use the formula:
Upper limit = sample proportion + margin of error
The sample proportion is the number of left-handed people divided by the sample size: 30/300 = 0.1.
The margin of error is determined using the standard error formula:
Standard error = √((sample proportion * (1 - sample proportion)) / sample size)
Plugging in the values, we get:
Standard error = √((0.1 * 0.9) / 300) ≈ 0.01633.
Next, we need to find the critical value for a 95% confidence level. This can be looked up in a standard normal distribution table (z-table). For a two-tailed test, at a 95% confidence level, the critical value is approximately 1.96.
Finally, we can calculate the margin of error by multiplying the critical value with the standard error:
Margin of error = 1.96 * 0.01633 ≈ 0.032.
Now, we can calculate the upper limit of the 95% confidence interval:
Upper limit = 0.1 + 0.032 ≈ 0.132.
Therefore, the upper limit of the 95% confidence interval for the proportion of people who are left-handed is approximately 0.132.
Upper limit = sample proportion + margin of error
The sample proportion is the number of left-handed people divided by the sample size: 30/300 = 0.1.
The margin of error is determined using the standard error formula:
Standard error = √((sample proportion * (1 - sample proportion)) / sample size)
Plugging in the values, we get:
Standard error = √((0.1 * 0.9) / 300) ≈ 0.01633.
Next, we need to find the critical value for a 95% confidence level. This can be looked up in a standard normal distribution table (z-table). For a two-tailed test, at a 95% confidence level, the critical value is approximately 1.96.
Finally, we can calculate the margin of error by multiplying the critical value with the standard error:
Margin of error = 1.96 * 0.01633 ≈ 0.032.
Now, we can calculate the upper limit of the 95% confidence interval:
Upper limit = 0.1 + 0.032 ≈ 0.132.
Therefore, the upper limit of the 95% confidence interval for the proportion of people who are left-handed is approximately 0.132.
Related Questions
One-fifth of the population is left-handed. A random sample of 20 people is selected.
a) What is...
in a sample of 1000 people <525 men and 475 women>,113 are left handed<63 men and 50 women>.the resu...
Fill this out:
Handedness: Left-handed Right-handed Both
Number of people Relative:
Fr...
Suppose there are 8,000 people at a basketball game. You survey a random sample of 400 spectators an...