What is the mean absolute deviation of the following dataset: 4.8, 5.9, 6.2, 10.8, 1.2, 6.4? Round the answer to the nearest tenth

1 answer

To find the mean absolute deviation, we need to find the mean of the dataset first.
Mean = (4.8 + 5.9 + 6.2 + 10.8 + 1.2 + 6.4) / 6 = 35.3 / 6 = 5.9

Next, we need to find the absolute deviation for each data point. Absolute deviation is the absolute value of the difference between each data point and the mean.
Absolute Deviation for 4.8 = |4.8 - 5.9| = 1.1
Absolute Deviation for 5.9 = |5.9 - 5.9| = 0
Absolute Deviation for 6.2 = |6.2 - 5.9| = 0.3
Absolute Deviation for 10.8 = |10.8 - 5.9| = 4.9
Absolute Deviation for 1.2 = |1.2 - 5.9| = 4.7
Absolute Deviation for 6.4 = |6.4 - 5.9| = 0.5

Now, we find the mean of the absolute deviations.
Mean Absolute Deviation = (1.1 + 0 + 0.3 + 4.9 + 4.7 + 0.5) / 6 = 11.5 / 6 ≈ 1.9

Therefore, the mean absolute deviation of the dataset is approximately 1.9.