A student wants to purchase some new school supplies. He wants to buy a calculator that costs $24 and some notebooks for school. Each notebook costs $2. The student only has $37 to spend.
Let n represent the number of notebooks that he buys.
Which inequality describes this scenario?
(1 point)
Responses
37<2n+24
37<2n+24
24n+2≥37
24 n plus 2 is greater than or equal to 37
37≥2n+24
37 is greater than or equal to 2 n plus 24
37>2n+24
5 answers
37 > 2n + 24
Solve for b in the following equation: A=12(a+b)
(1 point)
Responses
b=2A+a
b is equal to 2 cap A plus A
b=12A+a
b is equal to 1 half cap A plus A
b=12A−a
b is equal to 1 half cap A minus A
b=2A−a
(1 point)
Responses
b=2A+a
b is equal to 2 cap A plus A
b=12A+a
b is equal to 1 half cap A plus A
b=12A−a
b is equal to 1 half cap A minus A
b=2A−a
b=2A-a
Graph the solutions for the inequality: −3x+1≤−47
(2 points)
Responses
Graph the solutions for the inequality: −3x+1≤−47
(2 points)
Responses
(2 points)
Responses
Graph the solutions for the inequality: −3x+1≤−47
(2 points)
Responses
To graph the solution for the inequality −3x+1≤−47, we first need to solve for x.
−3x+1≤−47
Subtract 1 from both sides:
−3x≤−48
Divide both sides by −3. Remember that when dividing by a negative number, the inequality sign must be flipped:
x≥16
Now, we can graph the solution.
On a number line, mark a point at 16 and shade the line to the right of 16. The line should be solid because the inequality includes x=16.
The shaded region represents all the x values that satisfy the inequality −3x+1≤−47.
−3x+1≤−47
Subtract 1 from both sides:
−3x≤−48
Divide both sides by −3. Remember that when dividing by a negative number, the inequality sign must be flipped:
x≥16
Now, we can graph the solution.
On a number line, mark a point at 16 and shade the line to the right of 16. The line should be solid because the inequality includes x=16.
The shaded region represents all the x values that satisfy the inequality −3x+1≤−47.