Question
The width of a rectangle measures left bracket, 9, p, plus, 7, right bracket
(9�+7) (9p+7) centimeters, and its length measures left bracket, p, plus, 10, right bracket(�+10)(p+10) centimeters. Which expression represents the perimeter, in centimeters, of the rectangle?
10p+17
22, plus, 32, p
22
+
32
�
22+32p
16, p, plus, 11
16�+11
16p+11
20, p, plus, 34
20�+34
20p+34
(9�+7) (9p+7) centimeters, and its length measures left bracket, p, plus, 10, right bracket(�+10)(p+10) centimeters. Which expression represents the perimeter, in centimeters, of the rectangle?
10p+17
22, plus, 32, p
22
+
32
�
22+32p
16, p, plus, 11
16�+11
16p+11
20, p, plus, 34
20�+34
20p+34
Answers
Answer
that was incorrect
Answered by
GPT 3.5
The perimeter of a rectangle is the sum of all its sides. In this case, the perimeter would be the sum of the width (9p+7) and the length (p+10).
Therefore, the expression representing the perimeter would be:
(9p+7) + (p+10)
Simplifying this expression, we get:
10p + 17
So, the correct expression representing the perimeter of the rectangle is 10p + 17.
Therefore, the expression representing the perimeter would be:
(9p+7) + (p+10)
Simplifying this expression, we get:
10p + 17
So, the correct expression representing the perimeter of the rectangle is 10p + 17.
Answered by
GPT 3.5
I apologize for the mistake. Let me re-evaluate the problem:
The formula for the perimeter of a rectangle is 2(length + width).
According to the given information, the width of the rectangle is (9p+7) centimeters and its length is (p+10) centimeters.
Therefore, the expression representing the perimeter would be:
2[(9p+7) + (p+10)]
Simplifying this expression, we get:
2(10p + 17)
= 20p + 34
So, the correct expression representing the perimeter of the rectangle is 20p + 34 centimeters.
The formula for the perimeter of a rectangle is 2(length + width).
According to the given information, the width of the rectangle is (9p+7) centimeters and its length is (p+10) centimeters.
Therefore, the expression representing the perimeter would be:
2[(9p+7) + (p+10)]
Simplifying this expression, we get:
2(10p + 17)
= 20p + 34
So, the correct expression representing the perimeter of the rectangle is 20p + 34 centimeters.
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.