Asked by llp

Which statement is true about the relationships between the number sets?(1 point)
Responses

All rational numbers are also integers.

Some irrational numbers are also integers.

Whole numbers include all natural numbers and 0.

Not all natural numbers are real numbers.

Answers

Answered by llp
Which of the following is true about −9?(1 point)
Responses

It is a whole number but not an integer.

It is an integer but not a rational number.

It is an integer but not a whole number.

It is both an integer and a whole number.
Answered by llp
A sign in a gas station advertises gas at the rate of $3.39 9/10 per gallon. How many dollars does a gallon cost, writing the price strictly as a decimal?(1 point)
Answered by llp
Which set of numbers is always rational?(1 point)
Responses

fractions

positive numbers

decimals

integers
Answered by llp
The height of an equilateral triangle equals 3√/2 times the side length. Using 7/4 for the square root of 3, what is the approximate height in meters of an equilateral triangle with a side length of 8 meters?(1 point)
Answered by llp
The diagonal of a square equal √2 times the side length. Using 1.4 for the square root of 2, what is the approximate length in feet from one corner to an opposite corner of a square park that is 700 feet on a side?(1 point)
Answered by llp
Using a number line, what whole number and rational number to the nearest half is 40√ between?(1 point)
Answered by llp
Using a number line, what whole number and rational number to the nearest half is 58−−√ between?(1 point)
Responses

between 7.5 and 8

between 8 and 8.5

between 7 and 7.5

between 8.5 and 9
Answered by llp
Using rational approximations, what is an inequality statement comparing √81 and √88? Enter <, >, or =.(1 point)
Answered by llp
Express 8/11 as a repeating decimal. Mark the cycle of repeating digits with a bar.(1 point)
Answered by llp
Convert 0.72¯¯¯¯¯ to a rational number in simplest form.(1 point)
Answered by llp
Which of the following is a rational number between 5 and 5 1/4
Answered by llp
Which of the following is a rational number between 5 and 514?(1 point)
Responses

5 1/3

√26

5 1/7

5 2/5
Answered by llp
What is a rational number with a denominator of 7 that is between 7√ and 8√. Write your answer as an improper fraction.(1 point)
Answered by llp
Describe the relationship between rational numbers and whole numbers. Are all rational numbers also whole numbers? Are all whole numbers also rational numbers? Give examples to support your answer.(4 points)
Answer
What is a rational number with a denominator of 7 that is between 7√ and 8√. Write your answer as an improper fraction.(1 point)
Answered by Optional
will the bot respond to me?
Answered by ans
Again guys! Do your own research. The Bot is wrong in many of the answers! Be careful!!!
Answered by ans
For example, you can use this example to do your approx. calculations:
Find a rational number between 2 and 2 1/4 (2 1/4 change it to improper)
**You can use the method of adding the numbers together and dividing by 2**
1. You add 2/1 + 9/4 (look for c. denominator) you get: 17/4
2. 17/4 you will divide 17 / 4= 4.25 or 4 1/4 and
3. You do division of 4 1/4 (or 4.25) by 2 and you get: 2 1/8
Answered by BRUHHHH
What is a rational number with a denominator of 7 that is between 7–√ and 8–√. Write your answer as an improper fraction. (1 point)
Answered by anonymously
What is a rational number with a denominator of 7 that is between 7–√ and 8–√. Write your answer as an improper fraction.
Answered by sarah
Express 8/11 as a repeating decimal. Mark the cycle of repeating digits with a bar.(1 point)
Answered by GPT 3.5
Whole numbers include all natural numbers and 0.
Answered by GPT 3.5
It is both an integer and a whole number.
Answered by GPT 3.5
The price of gas is $3.39 9/10 per gallon. To write this as a decimal, we can ignore the fraction and consider the decimal part. 9/10 is equivalent to 0.9.

So, a gallon costs $3.39 + $0.9 = $<<3.39+0.9=4.29>>4.29.
Answered by GPT 3.5
The set of numbers that is always rational is fractions.
Answered by GPT 3.5
The height of an equilateral triangle is given by the formula:

height = √3/2 * side length

Given that √3 is approximately 7/4, we can substitute this value into the formula:

height = (7/4)/2 * 8

Simplifying further:

height = 7/4 * 4

height = 7 meters

Therefore, the approximate height of the equilateral triangle with a side length of 8 meters is 7 meters.
Answered by GPT 3.5
The length of the diagonal of a square is given by the formula:

diagonal = √2 * side length

Given that √2 is approximately 1.4, we can substitute this value into the formula:

diagonal = 1.4 * 700

diagonal = 980 feet

Therefore, the approximate length from one corner to an opposite corner of the square park that is 700 feet on a side is 980 feet.
Answered by GPT 3.5
To find the whole number and rational number to the nearest half that 40√ lies between, we need to approximate 40√ and determine its position on the number line.

Approximating √40, we can estimate it to be approximately 6.32.

To find the whole number and rational number to the nearest half, we can round 6.32 to the nearest half:

Nearest whole number: 6
Nearest half: 6.5

Therefore, 40√ is between the whole number 6 and the rational number 6.5 on the number line.
Answered by GPT 3.5
To find the whole number and rational number to the nearest half that 58⁻√ lies between, we need to approximate 58⁻√ and determine its position on the number line.

Approximating 58⁻√, we can estimate it to be approximately 7.64.

To find the whole number and rational number to the nearest half, we can round 7.64 to the nearest half:

Nearest whole number: 8
Nearest half: 7.5

Therefore, 58⁻√ is between the whole number 8 and the rational number 7.5 on the number line.
Answered by GPT 3.5
Using rational approximations, we can approximate √81 to be 9 and √88 to be approximately 9.38.

So, the inequality statement comparing √81 and √88 would be:

√81 < √88
Answered by GPT 3.5
To express 8/11 as a repeating decimal, we perform long division:

0. 72
11|8
-77
30
-22
80
-77
30
-22
80
-77
30
-22
80
-77
30
-22
80
-77
30
-22
80
-77
30
-22

The cycle of repeating digits is 72, indicating that 8/11 as a repeating decimal is approximately 0.72 (or 0.7272... with the 72 part repeating).
Answered by GPT 3.5
To convert the repeating decimal 0.72¯¯¯¯¯ to a rational number, we can use a variable to represent the repeating decimal. Let's say x = 0.72¯¯¯¯¯.

Multiplying both sides of the equation by 100 (to remove the decimal):

100x = 72.7272¯¯¯¯¯

Subtracting the original equation from the multiplied equation:

100x - x = 72.7272¯¯¯¯¯ - 0.72¯¯¯¯¯

Simplifying:

99x = 72.0072

Dividing both sides by 99:

x = 72.0072/99

To express x as a simplified rational number, we can reduce the fraction 72.0072/99 by dividing both the numerator and denominator by their greatest common divisor:

x = 7200.72/9900
x = 36/50

Therefore, the rational number equivalent to 0.72¯¯¯¯¯ is 36/50, which can be further simplified to 18/25 by dividing both the numerator and denominator by their greatest common divisor of 2.

So, 0.72¯¯¯¯¯ is equivalent to the rational number 18/25 in simplest form.
Answered by GPT 3.5
To find a rational number between 5 and 5 1/4, we can use the average of these two numbers.

The average of 5 and 5 1/4 can be calculated as follows:
(5 + 5 1/4) / 2

First, let's convert 5 1/4 to an improper fraction:
5 1/4 = (4 * 5 + 1) / 4 = 21/4

Now, we can calculate the average:
(5 + 21/4) / 2 = (20/4 + 21/4) / 2 = 41/4 / 2 = 41/8

Therefore, the rational number between 5 and 5 1/4 is 41/8.
Answered by GPT 3.5
Among the given options, the rational number between 5 and 514 is 5 1/3.
Answered by GPT 3.5
To find a rational number with a denominator of 7 that is between 7√ and 8√, we need to find the average of these two numbers.

The average of 7√ and 8√ can be calculated as follows:
(7√ + 8√) / 2

We can simplify this expression by factoring out the square root (√):
√(7^2 + 8^2) / 2
√(49 + 64) / 2
√113 / 2

To make this a rational number with a denominator of 7, we multiply the numerator and denominator by 7:
(√113 / 2) * (7 / 7)
(7√113) / 14

Therefore, a rational number with a denominator of 7 that is between 7√ and 8√ is (7√113) / 14 written as an improper fraction.
Answered by GPT 3.5
Rational numbers and whole numbers are related, but they are not the same.

Not all rational numbers are whole numbers. Whole numbers include all the natural numbers (positive integers) and zero, but rational numbers can also include fractions and decimals. For example, the rational number 2/3 is not a whole number because it is a fraction between 0 and 1.

However, all whole numbers are rational numbers. Whole numbers can be expressed as fractions with a denominator of 1. For example, the whole number 5 can be written as the rational number 5/1.

In summary, while all whole numbers are rational numbers, not all rational numbers are whole numbers.
Answered by GPT 3.5
To find a rational number with a denominator of 7 that is between 7√ and 8√, we can find the average of these two numbers.

The average of 7√ and 8√ can be calculated as follows:
(7√ + 8√) / 2

We can simplify this expression by factoring out the square root (√):
√(49 + 64) / 2
√113 / 2

To make this a rational number with a denominator of 7, we can multiply the numerator and denominator by 7:
(√113 / 2) * (7 / 7)
(7√113) / 14

Therefore, a rational number with a denominator of 7 that is between 7√ and 8√ is (7√113) / 14 written as an improper fraction.

Related Questions