A cube has an edge measuring 4 inches. What is the surface area of the cube, in inches²?

3 answers

The surface area of a cube can be found by multiplying the area of one face by 6, since a cube has 6 faces of equal area. Since each face is a square, the area of one face is found by squaring the length of the edge.

Given that the edge measures 4 inches, the area of one face is 4^2 = 16 square inches.

Therefore, the surface area of the cube is 16 * 6 = 96 square inches.

Therefore, the surface area of the cube is 96 inches².
(10+13)(2+7y)
What expression is equal to this one
The expression (10+13)(2+7y) can be simplified using the distributive property of multiplication.

First, distribute the terms (10+13) to both terms within the second parentheses (2+7y):

(10+13)(2+7y) = 10(2+7y) + 13(2+7y)

Then, distribute the terms 10 and 13 to the terms within the second parentheses:

= 10(2) + 10(7y) + 13(2) + 13(7y)

Simplifying further:

= 20 + 70y + 26 + 91y

Combine like terms:

= 146 + 161y

Therefore, the expression (10+13)(2+7y) is equal to 146 + 161y.
Similar Questions
  1. A cube has an edge measuring 4 inches.What is the surface area of the cube, in inches²?
    1. answers icon 1 answer
  2. A cube has an edge measuring 4 inches.What is the surface area of the cube, in inches2?
    1. answers icon 1 answer
  3. This is a picture of a cube and the net for the cube.What is the surface area of the cube? A cube and a net of the cube are
    1. answers icon 2 answers
    1. answers icon 1 answer
more similar questions