For t\in \mathbb {R}, define the following two functions:
f_1(t)=\frac{1}{\sqrt{2\pi }}\exp \left(-\frac{\max (1,t^2)}{2}\right)
and
f_2(t)=\frac{1}{\sqrt{2\pi }}\exp \left(-\frac{\min (1,t^2)}{2}\right).
In this problem, we explore whether these functions are valid probability density functions.
Determine whether the function f_1 is a valid PDF for a continuous random variable that can take any value on the real line. If not, is there a number c>0, such that c f_1 is a valid PDF?
Yes, it is a valid PDF.
No, it is not a valid PDF, but there is a constant c making cf_1 a valid PDF.
No, it is not a valid PDF, and there is no constant c making cf_1 a valid PDF.
None of the above.
unanswered
Determine whether the function f_2 is a valid PDF for a continuous random variable that can take any value on the real line. If not, is there a number c>0, such that c f_2 is a valid PDF?
Yes, it is a valid PDF.
No, it is not a valid PDF, but there is a constant c making cf_2 a valid PDF.
No, it is not a valid PDF, and there is no constant c making cf_2 a valid PDF.
None of the above
1 answer