Find all points on the curve x^2y^2+xy=2 where the slope of tangent line is -1.

This is what I got.

x^2y^2+xy=2

x^2*2ydy/dx + 2x*y^2 + x*dy/dx + y =0

dy/dx(2yx^2+x)= -2xy^2-y

dy/dx = (-2xy^2-y)/(x+2yx^2)

how do I finish from here? I need to know where the slop of the tangent line equals -1.

4 answers

You can insert dy/dx = -1 at this point:

x^2*2ydy/dx + 2x*y^2 + x*dy/dx + y =0

You then get an equation relating x and y. You also know that x and y are on te curve, so they satisfy the equation of the curve:

x^2y^2+xy = 2

So, you have two equations for the two unknowns x and y.
So I put -1 in for dy/dx and got this equation: -2x^2y+2xy-x+y=0. Then would I solve for either x or y and substitute back in to the original equation to get a value for x and y?
Yes.
I got this for y.

2x^2y-2xy+x-y=0

2x^2y-2xy+x=y

2x^2-2x+x=1 (divide through by y)

2x^2-x-1=0

what do I from here? It doesn't factor evenly. I'm stuck!
Similar Questions
    1. answers icon 1 answer
  1. 1. Given the curvea. Find an expression for the slope of the curve at any point (x, y) on the curve. b. Write an equation for
    1. answers icon 3 answers
  2. Consider the curve given by y^2 = 4xy + 1. Show work for all parts.A. Find dy/dx. B. Find all points on the curve where the
    1. answers icon 1 answer
  3. original curve: 2y^3+6(x^2)y-12x^2+6y=1dy/dx=(4x-2xy)/(x^2+y^2+1) a) write an equation of each horizontal tangent line to the
    1. answers icon 1 answer
more similar questions