2 of 52 of 5 Items

Question
Use the image to answer the question.

An oblique cone shows a base radius of 9 inches. The perpendicular height is 5 inches from the apex to the base outside the cone. A right angle is formed outside the cone to the right. A dashed diagonal line connects the center of the circular base to the apex.

What is the volume of the cone? Use 3.14 for pi.

(1 point)
Responses

47.1 cubic inches
47.1 cubic inches

235.5 cubic inches
235.5 cubic inches

942 cubic inches
942 cubic inches

423.9 cubic inches
423.9 cubic inches

1 answer

The volume of a cone is calculated using the formula V = (1/3)πr^2h, where r is the radius of the base and h is the height.

Plugging in the values given:
V = (1/3)π(9)^2(5)
V = (1/3)π(81)(5)
V = (1/3)(3.14)(405)
V = 423.9 cubic inches

Therefore, the correct answer is 423.9 cubic inches.