Asked by Lauren
I have a two part question that pertains to a curve (r(x)) and its tangent line at x=3.
We are given that at x=3, r(x)=8. In order to find the slope of the tangent line, we are given another point (on the tangent line): (3.2, 8.5). Therefore the slope of the tangent line at x=3 is 5/2
A. Let c(x)= 1/r(x). Find c'(3).
I used the quotient rule (for clarity, I am substituting "a" for r(x))
c'(x)= (a[0] - 1a')/a^2
Which reduces to
-a'/a^2
Replacing r(x) at x=3 for a, we get:
-r'(3)/(r(3))^2
Since the derivative of r(x) at 3 is equal to the slope of the tangent line at x=3, we get
-(5/2)/(8)^2 or -5/128
Does that look correct?
b. Let i(x) = the inverse of r(x). Find i'(8).
I had some trouble with this one. I know that the point (3,8) is on r(x) (from the given information in part a). This would mean that if i(x) is the inverse of r(x), then (8,3) would be on i(x). I also know that r'(3)=5/2. Because derivatives of inverses are reciprocals at corresponding points, would this mean that i'(8)=2/5?
We are given that at x=3, r(x)=8. In order to find the slope of the tangent line, we are given another point (on the tangent line): (3.2, 8.5). Therefore the slope of the tangent line at x=3 is 5/2
A. Let c(x)= 1/r(x). Find c'(3).
I used the quotient rule (for clarity, I am substituting "a" for r(x))
c'(x)= (a[0] - 1a')/a^2
Which reduces to
-a'/a^2
Replacing r(x) at x=3 for a, we get:
-r'(3)/(r(3))^2
Since the derivative of r(x) at 3 is equal to the slope of the tangent line at x=3, we get
-(5/2)/(8)^2 or -5/128
Does that look correct?
b. Let i(x) = the inverse of r(x). Find i'(8).
I had some trouble with this one. I know that the point (3,8) is on r(x) (from the given information in part a). This would mean that if i(x) is the inverse of r(x), then (8,3) would be on i(x). I also know that r'(3)=5/2. Because derivatives of inverses are reciprocals at corresponding points, would this mean that i'(8)=2/5?
Answers
Answered by
Reiny
I agree with your thinking for both questions.
I especially like that you realize the relationship of slopes between corresponding points on a relation and its inverse.
I especially like that you realize the relationship of slopes between corresponding points on a relation and its inverse.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.