Asked by grant
The table shows the depth (d metres) of water in a harbour at certain times (t hours) after midnight on a particular day.
time t (hours)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
and the in the next column corresponding to the figures above is
depth d (m)
3.0
3.3
4.2
5.6
7.2
8.2
9.0
8.9
8.1
7.3
5.6
4.3
3.5
3.1
Use the regression facilities on your calculator to fit a sine curve to these data. Choose the one option which provides the best fit model (with coefficient rounded to 2 significant figures).
A) t=3.0sin(0.49d-1.6)+6.0
B) d=3.0+6.0sin(0.49t-1.6)
C) t=2.9sin(0.48d-1.5)+6.0
D) d=3.0sin(0.49t-1.6)+6.0
E) d=2.99sin(0.49t-1.60)+6.04
F) d=6.0-3.0sin(0.49t+1.6)
Can anyone help me please. I may be d?
Note that you want d(t) to be of the form:
d(t) = A + B sin(r t + s)
Now, as you can see, all the options that express d like this have r = 0.49. This makes it easy to find the best fit, because you can now transform this problem into a linear regression problem as follows. You write:
d(t) = A + B sin(r t + s) =
A + B [cos(s) sin(r t) cos(s) + sin(s)cos(rt)(rt)] =
A + B cos(s) sin(rt) + B sin(s) cos(rt)
So, this problem is of the form:
d(t) = A_1 + A_2 f_2(t) +
A_3f_3(t)
with
f_2(t) = sin(rt)
f_3(t) = cos(rt)
So this is a standard linear regression problem as d is a linear function of f_2 and f_3.
You just need to proceed in the same way as you would proceed in case of a regression problem like:
Y = A + B X1 + C X2
for given data for Y, X1, and X2.
i'm not sure what you mean. which are the correct answers?
Count, please email me at [email protected]
Hi Grant,
Do you have a calculator in which you can enter data to do linear regression in multiple variables?
If so, then you need to do the following. Compile a table with the values of X1 = sin(0.49 t) and
X2 = cos(0.49 t).
Then you must enter the data for Y = d, X1 and X2 in your calculator and out will come the regression parameters corresponding to a fit of the form:
Y = A + B X1 + C X2
From B and C you then calculate the amplitude and the phase of the sin...
I've just emailed you :)
I don't have this type of calculator as yet and my homework is due on monday. Is the answer A?
time t (hours)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
and the in the next column corresponding to the figures above is
depth d (m)
3.0
3.3
4.2
5.6
7.2
8.2
9.0
8.9
8.1
7.3
5.6
4.3
3.5
3.1
Use the regression facilities on your calculator to fit a sine curve to these data. Choose the one option which provides the best fit model (with coefficient rounded to 2 significant figures).
A) t=3.0sin(0.49d-1.6)+6.0
B) d=3.0+6.0sin(0.49t-1.6)
C) t=2.9sin(0.48d-1.5)+6.0
D) d=3.0sin(0.49t-1.6)+6.0
E) d=2.99sin(0.49t-1.60)+6.04
F) d=6.0-3.0sin(0.49t+1.6)
Can anyone help me please. I may be d?
Note that you want d(t) to be of the form:
d(t) = A + B sin(r t + s)
Now, as you can see, all the options that express d like this have r = 0.49. This makes it easy to find the best fit, because you can now transform this problem into a linear regression problem as follows. You write:
d(t) = A + B sin(r t + s) =
A + B [cos(s) sin(r t) cos(s) + sin(s)cos(rt)(rt)] =
A + B cos(s) sin(rt) + B sin(s) cos(rt)
So, this problem is of the form:
d(t) = A_1 + A_2 f_2(t) +
A_3f_3(t)
with
f_2(t) = sin(rt)
f_3(t) = cos(rt)
So this is a standard linear regression problem as d is a linear function of f_2 and f_3.
You just need to proceed in the same way as you would proceed in case of a regression problem like:
Y = A + B X1 + C X2
for given data for Y, X1, and X2.
i'm not sure what you mean. which are the correct answers?
Count, please email me at [email protected]
Hi Grant,
Do you have a calculator in which you can enter data to do linear regression in multiple variables?
If so, then you need to do the following. Compile a table with the values of X1 = sin(0.49 t) and
X2 = cos(0.49 t).
Then you must enter the data for Y = d, X1 and X2 in your calculator and out will come the regression parameters corresponding to a fit of the form:
Y = A + B X1 + C X2
From B and C you then calculate the amplitude and the phase of the sin...
I've just emailed you :)
I don't have this type of calculator as yet and my homework is due on monday. Is the answer A?
Answers
There are no AI answers yet. The ability to request AI answers is coming soon!
There are no human answers yet. A form for humans to post answers is coming very soon!