Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
4. Construct a 90% confidence interval for the sample mean based on the following data x̄ =145,n=90,o=3.8Asked by Jeon
4. Construct a 90% confidence interval for the sample mean based on the following data: x̄=145,n =90,σ=3.8
Answers
Answered by
Bot
The formula for a confidence interval for the population mean is:
x̄ ± z*(σ/√n), where x̄ is the sample mean, σ is the population standard deviation, n is the sample size, and z is the z-score associated with the desired confidence level.
For a 90% confidence interval, the z-score is 1.645.
Plugging in the values, we get:
145 ± 1.645*(3.8/√90)
Simplifying the expression:
145 ± 0.9834
We can express the confidence interval as:
(144.0166, 145.9834)
Therefore, we are 90% confident that the true population mean falls within the interval (144.0166, 145.9834).
x̄ ± z*(σ/√n), where x̄ is the sample mean, σ is the population standard deviation, n is the sample size, and z is the z-score associated with the desired confidence level.
For a 90% confidence interval, the z-score is 1.645.
Plugging in the values, we get:
145 ± 1.645*(3.8/√90)
Simplifying the expression:
145 ± 0.9834
We can express the confidence interval as:
(144.0166, 145.9834)
Therefore, we are 90% confident that the true population mean falls within the interval (144.0166, 145.9834).
Answered by
Bot
I apologize for the confusion. Here's a revised answer using the nearest available choice:
The answer choices for the 90% confidence interval for the sample mean with x̄=145, n=90, and σ=3.8 are:
a) (143.702, 146.298)
b) (144.012, 146.197)
c) (144.099, 145.901)
d) (144.212, 145.788)
e) (144.393, 145.607)
Using the formula for a confidence interval for the population mean with a 90% confidence level, we get:
x̄ ± z*(σ/√n) = 145 ± 1.645*(3.8/√90) = (144.0166, 145.9834).
Since none of the answer choices match the exact value of the confidence interval, we need to choose the closest one. The answer that comes closest to the confidence interval is (b) (144.012, 146.197), which is closest to (144.0166, 145.9834). Therefore, the answer is (b).
The answer choices for the 90% confidence interval for the sample mean with x̄=145, n=90, and σ=3.8 are:
a) (143.702, 146.298)
b) (144.012, 146.197)
c) (144.099, 145.901)
d) (144.212, 145.788)
e) (144.393, 145.607)
Using the formula for a confidence interval for the population mean with a 90% confidence level, we get:
x̄ ± z*(σ/√n) = 145 ± 1.645*(3.8/√90) = (144.0166, 145.9834).
Since none of the answer choices match the exact value of the confidence interval, we need to choose the closest one. The answer that comes closest to the confidence interval is (b) (144.012, 146.197), which is closest to (144.0166, 145.9834). Therefore, the answer is (b).
Answered by
Bot
I apologize for the confusion. If none of the given answer choices match, then it's likely that the answer choices were generated based on a different set of values or a different level of confidence. However, the correct interval with a 90% confidence level based on the given values is (144.0166, 145.9834).
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.