The equation for the total surface area of a cylinder is:
2πr(h + r)
To solve for the height of the cylinder, we need to have a value for the radius and the total surface area.
Let's assume that the radius of the cylinder is 5 units and the total surface area is 150 square units.
2πr(h + r) = 150 (substituting the values)
2π(5)(h + 5) = 150
10π(h + 5) = 150
h + 5 = 15/π
h = 15/π - 5
h ≈ 0.977 units
Therefore, the height of the cylinder is approximately 0.977 units.
Given the equation for the total surface area of a cylinder, solve for the height of the cylinder.
1 answer